留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于杂交应力元法的颗粒增强复合材料Monte-Carlo模拟

王伟 郭然

王伟, 郭然. 基于杂交应力元法的颗粒增强复合材料Monte-Carlo模拟[J]. 应用数学和力学, 2021, 42(8): 794-802. doi: 10.21656/1000-0887.420016
引用本文: 王伟, 郭然. 基于杂交应力元法的颗粒增强复合材料Monte-Carlo模拟[J]. 应用数学和力学, 2021, 42(8): 794-802. doi: 10.21656/1000-0887.420016
WANG Wei, GUO Ran. Monte-Carlo Simulation of Particle Reinforced Composites Based on Hybrid Stress Elements[J]. Applied Mathematics and Mechanics, 2021, 42(8): 794-802. doi: 10.21656/1000-0887.420016
Citation: WANG Wei, GUO Ran. Monte-Carlo Simulation of Particle Reinforced Composites Based on Hybrid Stress Elements[J]. Applied Mathematics and Mechanics, 2021, 42(8): 794-802. doi: 10.21656/1000-0887.420016

基于杂交应力元法的颗粒增强复合材料Monte-Carlo模拟

doi: 10.21656/1000-0887.420016
基金项目: 

国家自然科学基金(11572142)

详细信息
    作者简介:

    王伟(1995—),男,硕士(E-mail: 1583687309@qq.com);郭然(1968—),男,教授,博士,博士生导师(通讯作者. E-mail: prof.guo@189.cn).

    通讯作者:

    郭然(1968—),男,教授,博士,博士生导师(通讯作者. E-mail: prof.guo@189.cn).

  • 中图分类号: TB333

Monte-Carlo Simulation of Particle Reinforced Composites Based on Hybrid Stress Elements

Funds: 

The National Natural Science Foundation of China(11572142)

  • 摘要: 杂交应力元假设的高阶应力场可以用较疏的网格获得较高的计算精度.采用四叉树网格离散非均质计算域,四叉树杂交应力单元悬挂节点的位移协调条件自动满足,且得益于单元类型数量有限,单元刚度矩阵可以预计算,以便在实际计算时直接读取调用,大幅提高了计算效率.考虑夹杂的随机性对颗粒增强复合材料力学性能的影响,采用均匀化方法和Monte-Carlo方法,研究了随机夹杂的体积比、数量、长宽比对材料均质等效模量的影响,结果表明,复合材料的等效弹性模量随夹杂体积比、数量、长宽比的增大而增大,且对体积比最敏感.
  • [2]KAMINSKI M, LESNIAK M. Homogenization of metallic fiber-reinforced composites under stochastic ageing[J].Composite Structures,2012,94(2): 386-393.
    ESHELBY J D. The determination of the elastic field of an ellipsoidal inclusion, and related problems[J].Proceedings of the Royal Society of London(Series A): Mathematical and Physical Sciences,1957,241(1226): 376-396.
    [3]SAKATA S I, ASHIDA F, IWAHASHI D. Stochastic homogenization analysis of a particle reinforced composite material using an approximate Monte-Carlo simulation with the weighted least square method[J].Journal of Computational Science and Technology,2013,7(1): 1-11.
    [4]LEE S P, JIN J W, KANG K W. Probabilistic analysis for mechanical properties of glass/epoxy composites using homogenization method and Monte-Carlo simulation[J].Renewable Energy,2014,65: 219-226.
    [5]PIAN T H H. Derivation of element stiffness matrices by assumed stress distributions[J].AIAA Journal,1964,2(7): 1333-1336.
    [6]PIAN T H H, TONG P. Relations between incompatible model and hybrid stress model[J].International Journal for Numerical Methods in Engineering,1986,22(1): 173-181.
    [7]杨锋, 郭然. 多边形应力杂交单元的接触算法研究[J]. 应用数学和力学, 2019,40(10): 1059-1070.(YANG Feng, GUO Ran. Study on contact algorithms for the polygonal hybrid stress element method[J].Applied Mathematics and Mechanics,2019,40(10): 1059-1070.(in Chinese))
    [8]GHOSH S, MUKHOPADHYAY S N. A material based finite element analysis of heterogeneous media involving Dirichlet tessellations[J].Computer Methods in Applied Mechanics and Engineering,1993,104(2): 211-247.
    [9]GHOSH S, MOORTHY S. Elastic-plastic analysis of arbitrary heterogeneous materials with the Voronoi cell finite element method[J].Computer Methods in Applied Mechanics and Engineering,1995,121(1/4): 373-409.
    [10]GUO R, SHI H, YAO Z. Numerical simulation of thermo-mechanical fatigue properties for particulate reinforced composites[J].Acta Mechanica Sinica,2005,21(2): 160-168.
    [11] LI H,GUO R,CHENG H M. Calculation of stress intensity factors of matrix crack tip in particle reinforced composites using the singular Voronoi cell finite element method[J].Theoretical and Applied Fracture Mechanics,2019,101: 269-278.
    [12] ZHANG R, WANG T, GUO R. Modeling of interphases in multiple heterogeneities reinforced composites using Voronoi cell finite elements[J]. Acta Mechanica Sinica,2020,36(4): 887-901.
    [13]郭然. 颗粒增强复合材料界面脱层和热机疲劳的数值模拟[D]. 博士学位论文. 北京: 清华大学, 2003.(GUO Ran. Modeling of interfacial debonding and characterization of fatigue in particle reinforced composites[D]. PhD Thesis. Beijing: Tsinghua University, 2003.(in Chinese))
    [14]YANG Q S, QIN Q H. Micro-mechanical analysis of composite materials by BEM[J].Engineering Analysis With Boundary Elements,2004,28(8): 919-926.
    [15]SUKUMAR N, TABARRAEI A. Conforming polygonal finite elements[J]. International Journal for Numerical Methods in Engineering,2004,61(12): 2045-2066.
    [16]TABARRAEI A, SUKUMAR N. Extended finite element method on polygonal and quadtree meshes[J].Computer Methods in Applied Mechanics and Engineering,2008,197(5): 425-438.
    [17]OOI E T, NATARAJAN S, SONG C, et al. Crack propagation modelling in concrete using the scaled boundary finite element method with hybrid polygon-quadtree meshes[J].International Journal of Fracture,2017,203(1): 135-157.
    [18]WENG G J. Some elastic properties of reinforced solids, with special reference to isotropic ones containing spherical inclusions[J]. International Journal of Engineering Science,1984,22(7): 845-856.
  • 加载中
计量
  • 文章访问数:  513
  • HTML全文浏览量:  103
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-15
  • 修回日期:  2021-03-04
  • 网络出版日期:  2021-08-14

目录

    /

    返回文章
    返回