留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Hamilton力学下框筒结构剪滞翘曲位移模式研究

胡启平 陈哲 周娟

胡启平,陈哲,周娟. Hamilton力学下框筒结构剪滞翘曲位移模式研究 [J]. 应用数学和力学,2022,43(4):374-381 doi: 10.21656/1000-0887.420088
引用本文: 胡启平,陈哲,周娟. Hamilton力学下框筒结构剪滞翘曲位移模式研究 [J]. 应用数学和力学,2022,43(4):374-381 doi: 10.21656/1000-0887.420088
HU Qiping, CHEN Zhe, ZHOU Juan. Research on Shear Lag Warping Displacement Modes of Frame-Tube Structures Based on the Hamiltonian Mechanics[J]. Applied Mathematics and Mechanics, 2022, 43(4): 374-381. doi: 10.21656/1000-0887.420088
Citation: HU Qiping, CHEN Zhe, ZHOU Juan. Research on Shear Lag Warping Displacement Modes of Frame-Tube Structures Based on the Hamiltonian Mechanics[J]. Applied Mathematics and Mechanics, 2022, 43(4): 374-381. doi: 10.21656/1000-0887.420088

Hamilton力学下框筒结构剪滞翘曲位移模式研究

doi: 10.21656/1000-0887.420088
基金项目: 河北省自然科学基金(E2016402110)
详细信息
    作者简介:

    胡启平(1963—),男,教授,硕士,硕士生导师(E-mail:huqiping@hebeu.edu.cn

    周娟(1982—),女,讲师,硕士(通讯作者. E-mail:41249061@qq.com)

  • 中图分类号: O39; TU311.4

Research on Shear Lag Warping Displacement Modes of Frame-Tube Structures Based on the Hamiltonian Mechanics

  • 摘要:

    以等效连续化方法为基础,在Hamilton力学体系下进行框筒结构剪滞翘曲位移函数精度研究。选用不同类型的函数描述翼缘板的剪滞翘曲位移,考虑等效板的剪切变形以及纵向翘曲,得到不同位移函数下结构的总势能及对应的Lagrange函数。区别于传统变分法,该文在Hamilton力学体系下进行问题研究,导出框筒结构弯曲问题的Hamilton正则方程并利用精细积分法求解,进而计算出柱轴力并进行精度分析。算例验证结果表明:使用该方法分析框筒结构的剪力滞后效应是简单可行的;不同翘曲位移函数的选择对侧移计算结果影响不大,对轴力求解结果影响较大,二次抛物线最能反映等效翼缘板的实际翘曲位移;对比不同形式荷载作用下等效翼缘板中应力分布可知,随着外荷载合力作用点位置的升高,结构顶部负剪力滞后效应逐渐减弱至消失。

  • 图  1  等效筒模型

    Figure  1.  The equivalent tube model

    图  2  算例平面图

    Figure  2.  The plan of the example

    图  3  等效筒底部应力对比

    Figure  3.  Stress comparison at the bottom of the equivalent tube

    图  4  不同翘曲函数下结构侧移曲线

    Figure  4.  Curves of structural lateral displacements with different warping functions

    图  5  工况①下不同高度处翼缘应力分布

    Figure  5.  Flange stress distributions at different heights under working condition ①

    图  6  工况②下不同高度处翼缘应力分布

    Figure  6.  Flange stress distributions at different heights under working condition ②

    图  7  工况③下不同高度处翼缘应力分布

    Figure  7.  Flange stress distributions at different heights under working condition ③

    表  1  工况①下结构底层柱轴力计算值及相对误差

    Table  1.   The axial force values and relative errors of the bottom floor column under working condition ①

    column numberref. [1] N/kNfunction type N/kNrelative error δ1/%
    quadratic functioncosine functioncatenary functionexponential functionquadratic functioncosine functioncatenary functionexponential function
    1000000000
    248.9051.3250.0852.0147.974.952.426.36−1.90
    3105.80108.53106.07109.85102.202.580.263.83−3.40
    4178.80177.51173.87179.36168.94−0.72−2.760.31−5.52
    5275.90264.15259.38266.35254.44−4.26−6.00−3.46−7.78
    6698.00644.80636.71647.67629.60−7.62−8.78−7.21−9.80
    7304.50283.86291.09278.81288.19−6.78−4.41−8.44−5.36
    8223.00210.29220.09204.51223.82−5.70−1.30−8.300.37
    9159.60153.06159.13150.16169.32−4.10−0.29−5.926.09
    10114.40112.19112.36113.11123.20−1.94−1.79−1.137.69
    1187.2087.6682.9591.5784.150.53−4.875.01−3.50
    1278.1079.4972.9284.5058.691.77−6.638.20−24.85
    下载: 导出CSV

    表  2  工况①下结构最大侧移值及相对误差

    Table  2.   Maximum side shift values and relative errors of the structure under working condition ①

    ref. [1] u/cmfunction type u/cmrelative error δ2/%
    quadratic functioncosine functioncatenary functionexponential functionquadratic functioncosine functioncatenary functionexponential function
    0.750.76850.76630.76910.76382.472.172.551.84
    下载: 导出CSV
  • [1] 包世华, 张铜生. 高层建筑结构设计和计算[M]. 北京: 高等教育出版社, 2013.

    BAO Shihua, ZHANG Tongsheng. Design and Analysis of Tall-Building Structure[M]. Beijing: Higher Education Press, 2013. (in Chinese)
    [2] 曾新, 马乐, 谢华. 框筒结构剪力滞后效应分析[J]. 广西大学学报(自然科学版), 2007, 32(S2): 453-456. (ZENG Xin, MA Le, XIE Hua. Analysis of shear-lag effect in framed tube structure[J]. Journal of Guangxi University (Natural Science), 2007, 32(S2): 453-456.(in Chinese)
    [3] 刘中辉, 王全凤. 框筒结构长宽比对剪力滞后的影响及其分析[J]. 华侨大学学报(自然科学版), 2005, 26(3): 331-332. (LIU Zhonghui, WANG Quanfeng. Influence of length-width ratio of framed tube structure on shear lag and its analysis[J]. Journal of Huaqiao University (Natural Science), 2005, 26(3): 331-332.(in Chinese)
    [4] 龚胡广, 方辉, 沈蒲生. 框筒结构的简化分析方法[J]. 建筑结构, 2006, 36(7): 79-82. (GONG Huguang, FANG Hui, SHEN Pusheng. Simplified method for calculating frame-tube structure[J]. Building Structure, 2006, 36(7): 79-82.(in Chinese)
    [5] 李耀庄, 翟治鹏, 项正良. 基于翘曲位移函数的框筒结构剪力滞后效应研究[J]. 铁道科学与工程学报, 2017, 14(7): 1505-1511. (LI Yaozhuang, ZHAI Zhipeng, XIANG Zhengliang. Research on shear lag effect of frame tube structure based on warping displacement function[J]. Journal of Railway Science and Engineering, 2017, 14(7): 1505-1511.(in Chinese) doi: 10.3969/j.issn.1672-7029.2017.07.022
    [6] 张玉芳. 高层建筑框筒结构简化分析方法研究[D]. 硕士学位论文. 长沙: 湖南大学, 2005.

    ZHANG Yufang. Study on simplified methods to analyze framed-tube structures of high-rise buildings[D]. Master Thesis. Changsha: Hunan University, 2005. (in Chinese)
    [7] 金仁和, 魏德敏. 框筒结构剪力滞后研究现状与思考[J]. 建筑钢结构进展, 2008, 10(2): 23-27. (JIN Renhe, WEI Demin. Current investigation and expectation on the shear lag of framed-tube structures[J]. Progress in Steel Building Structures, 2008, 10(2): 23-27.(in Chinese)
    [8] 张玉平, 胡火全, 李传习, 等. 薄壁箱梁剪力滞翘曲位移函数的改进与对比分析[J]. 应用力学学报, 2016, 33(6): 1099-1105. (ZHANG Yuping, HU Huoquan, LI Chuanxi, et al. An improvement and comparative analysis of shear lag warping displacement function in thin-walled box girder[J]. Chinese Journal of Applied Mechanics, 2016, 33(6): 1099-1105.(in Chinese)
    [9] 赵庆友, 张元海, 邵江艳. 翼板变厚度箱形梁的剪力滞效应分析[J]. 应用数学和力学, 2019, 40(6): 609-619. (ZHAO Qingyou, ZHANG Yuanhai, SHAO Jiangyan. Analysis of shear lag effects in box girders with variable-thickness flanges[J]. Applied Mathematics and Mechanics, 2019, 40(6): 609-619.(in Chinese)
    [10] 蔡恒, 卢海林, 汤正. 考虑剪力滞效应的曲线箱梁自振特性研究[J]. 世界地震工程, 2016, 32(4): 239-244. (CAI Heng, LU Hailin, TANG Zheng. Vibration properties research on curved box girder considering shear lag effects[J]. World Earthquake Engineering, 2016, 32(4): 239-244.(in Chinese)
    [11] 甘亚南, 周广春. 薄壁箱梁纵向剪滞翘曲函数精度选择的研究[J]. 工程力学, 2008, 25(6): 100-106. (GAN Yanan, ZHOU Guangchun. An approach for precision selection of longitudinal shear lag warping displacement function of thin-walled box girders[J]. Engineering Mechanics, 2008, 25(6): 100-106.(in Chinese)
    [12] 胡启平, 卢明. 筒中筒结构协同分析新方法[J]. 工程力学, 2007, 24(S1): 150-153. (HU Qiping, LU Ming. New method for coordination analysis of tube-in-tube structures[J]. Engineering Mechanics, 2007, 24(S1): 150-153.(in Chinese)
    [13] 钟万勰. 应用力学对偶体系[M]. 北京: 科学出版社, 2002.

    ZHONG Wanxie. Dual System of Applied Mechanics[M]. Beijing: Science Press, 2002. (in Chinese)
    [14] 钟万勰. 应用力学的辛数学方法[M]. 北京: 高等教育出版社, 2006.

    ZHONG Wanxie. Symplectic Solution Methodology in Applied Mechanics[M]. Beijing: Higher Education Press, 2006. (in Chinese)
    [15] 胡启平, 王丽娟. 基础隔震框架结构动力时程分析的精细积分法[J]. 广西大学学报(自然科学版), 2016, 41(4): 939-944. (HU Qiping, WANG Lijuan. Precise integration method for dynamic time history analysis of base-isolation frame structures[J]. Journal of Guangxi University (Natural Science), 2016, 41(4): 939-944.(in Chinese)
    [16] 汪梦甫, 周锡元. 结构动力方程的高斯精细时程积分法[J]. 工程力学, 2004, 21(4): 13-16. (WANG Mengfu, ZHOU Xiyuan. Gauss precise time-integration of structural dynamic analysis[J]. Engineering Mechanics, 2004, 21(4): 13-16.(in Chinese) doi: 10.3969/j.issn.1000-4750.2004.04.003
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  600
  • HTML全文浏览量:  226
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-06
  • 录用日期:  2021-06-17
  • 修回日期:  2021-06-17
  • 网络出版日期:  2022-03-10
  • 刊出日期:  2022-04-01

目录

    /

    返回文章
    返回