留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Kriging模型和提升小波变换的随机模型修正

吴雨程 殷红 彭珍瑞

吴雨程,殷红,彭珍瑞. 基于Kriging模型和提升小波变换的随机模型修正 [J]. 应用数学和力学,2022,43(7):761-771 doi: 10.21656/1000-0887.420128
引用本文: 吴雨程,殷红,彭珍瑞. 基于Kriging模型和提升小波变换的随机模型修正 [J]. 应用数学和力学,2022,43(7):761-771 doi: 10.21656/1000-0887.420128
WU Yucheng, YIN Hong, PENG Zhenrui. Stochastic Model Updating Based on Kriging Model and Lifting Wavelet Transform[J]. Applied Mathematics and Mechanics, 2022, 43(7): 761-771. doi: 10.21656/1000-0887.420128
Citation: WU Yucheng, YIN Hong, PENG Zhenrui. Stochastic Model Updating Based on Kriging Model and Lifting Wavelet Transform[J]. Applied Mathematics and Mechanics, 2022, 43(7): 761-771. doi: 10.21656/1000-0887.420128

基于Kriging模型和提升小波变换的随机模型修正

doi: 10.21656/1000-0887.420128
基金项目: 国家自然科学基金 (51768035)
详细信息
    作者简介:

    吴雨程(1997—),男,硕士生 (E-mail:821085844@qq.com

    殷红(1978—),女,教授,博士,硕士生导师 (E-mail:yinhong@mail.lzjtu.cn

    彭珍瑞(1972—),男,教授,博士,博士生导师 (通讯作者. E-mail:pzrui@163.com

  • 中图分类号: O327

Stochastic Model Updating Based on Kriging Model and Lifting Wavelet Transform

  • 摘要:

    为提高随机模型修正效率,减小计算量,提出了一种基于Kriging模型和提升小波变换的随机模型修正方法。首先,对加速度频响函数进行提升小波变换,提取第5层近似系数代替原频响函数。其次,采用拉丁超立方抽样抽取待修正样本,将其作为Kriging模型的输入,对应的近似系数作为输出,构建Kriging模型。提出了一种引入莱维飞行(Lévy flight)的蝴蝶优化算法(LBOA),并将其应用于Kriging模型相关参数的寻优中,提高Kriging模型的精度。最后,以最小化Wasserstein距离为目标,通过鲸鱼优化算法求解待修正参数的均值。测试函数结果表明,LBOA在寻优能力、收敛精度和稳定性等方面有了很大的提升。数值算例的修正误差均低于0.4%,验证了所提模型修正方法具有较高的修正精度和效率。

  • 图  1  f6收敛曲线

    Figure  1.  Convergence curves of $ {f_6} $

    图  2  提升小波变换过程

    Figure  2.  The process of the lifting wavelet transform

    图  3  近似系数提取流程

    Figure  3.  The flow chart of extracting approximate coefficients

    图  4  模型修正流程图

    Figure  4.  The flowchart of model updating

    图  5  二维桁架结构

    Figure  5.  The 2D truss structure

    图  6  参数对结构AFRF的灵敏度

    Figure  6.  Sensitivity of structure AFRF to parameters

    图  7  Kriging模型精度评估

    Figure  7.  Accuracy evaluation of the Kriging model

    图  8  修正前后加速度频响函数曲线

    Figure  8.  AFRF curves before and after updating

    图  9  三维桁架结构

    Figure  9.  The 3D truss structure

    图  10  第1、3、5层近似系数

    Figure  10.  Approximate coefficients for the 1st, 3rd and 5th levels

    图  11  Kriging模型参数寻优曲线

    Figure  11.  Optimization curves of the Kriging model parameter

    图  12  Kriging模型精度评估

    Figure  12.  Accuracy evaluation of the Kriging model

    图  13  修正前后加速度频响函数曲线:(a)实部曲线;(b)虚部曲线

    Figure  13.  AFRF curves before and after updating: (a) real part curves; (b) imaginary part curves

    表  1  BOA改进算法寻优结果

    Table  1.   Optimization results of the improved BOA algorithm

    functionBOALBOA
    mean valuestandard deviationsuccessful rate $\delta$/%mean valuestandard deviationsuccessful rate $\delta$/%
    $ {f_1} $1.80E−141.25E−1510000100
    $ {f_2} $9.43E−123.40E−1210000100
    $ {f_3} $7.67E−43.48E−404.37E−54.93E−586
    $ {f_4} $1.81E−152.24E−1510000100
    $ {f_5} $1.90E+15.81E+18000100
    $ {f_6} $1.19E−111.95E−121008.88E−160100
    下载: 导出CSV

    表  2  寻优结果对比

    Table  2.   Comparison of optimization results

    LBOABOA
    ${\theta _k}$4.064 5 × 1033.320 5
    fitting value e7.396 2 × 10146.941 9 × 10−8
    running time t/s27.227.7
    下载: 导出CSV

    表  3  桁架结构修正前后参数均值及误差

    Table  3.   Parameter mean values and errors of the truss structure before and after updating

    updated parametertest valuefinite element valueupdated valuerelative error δ/%
    E/GPa190171189.8810.0626
    E/GPa190209190.0090.0047
    E/GPa190171189.9370.0331
    E/GPa190209189.9710.0155
    下载: 导出CSV

    表  4  不同响应指标下的结果对比

    Table  4.   Comparison of results under different response indicators

    response indicatorrelative error of E
    δ1/%
    relative error of E
    δ2/%
    relative error of E
    δ3/%
    relative error of E
    δ4/%
    time consumed
    t/s
    AFRF1.80921.89070.99210.773992
    approximate coefficient0.06260.00470.03310.015527
    下载: 导出CSV

    表  5  桁架结构修正前后结构参数均值及误差

    Table  5.   Parameter mean values and errors of the truss structure before and after updating

    updated parametertest valuefinite element valueupdated valuerelative error δ/%
    E/GPa190209189.6070.207
    $\rho /({\text{kg} } \cdot { {\text{m} }^{ { { - 3} } } })$780070207773.5620.339
    A/mm285.59585.6620.189
    下载: 导出CSV
  • [1] 张皓, 李东升, 李宏男. 有限元模型修正研究进展: 从线性到非线性[J]. 力学进展, 2019, 49: 542-575. (ZHANG Hao, LI Dongsheng, LI Hongnan. Recent progress on finite element model updating: from linearity to nonlinearity[J]. Advances in Mechanics, 2019, 49: 542-575.(in Chinese)

    ZHANG Hao, LI Dongsheng, LI Hongnan. Recent progress on finite element model updating: from linearity to nonlinearity[J]. Advances in Mechanics, 2019, 49: 542-575. (in Chinese))
    [2] STEENACKERS G, GUILLAUME P. Finite element model updating taking into account the uncertainty on the modal parameters estimates[J]. Journal of Sound and Vibration, 2006, 296(4/5): 919-934. doi: 10.1016/j.jsv.2006.03.023
    [3] TSHILIDZI M. Finite-Element-Model Updating Using Computional Intelligence Techniques[M]. London: Springer, 2010.
    [4] 方圣恩, 林友勤, 夏樟华. 考虑结构参数不确定性的随机模型修正方法[J]. 振动、测试与诊断, 2014, 34(5): 832-837, 973. (FANG Sheng’en, LIN Youqin, XIA Zhanghua. Stochastic model updating method considering the uncertainties of structural parameters[J]. Journal of Vibration, Measurement and Diagnosis, 2014, 34(5): 832-837, 973.(in Chinese) doi: 10.3969/j.issn.1004-6801.2014.05.008

    FANG Shengen, LIN Youqin, XIA Zhanghua. Stochastic model updating method considering the uncertainties of structural parameters[J]. Journal of Vibration Measurement and Diagnosis, 2014, 34(5): 832-837, 973. (in Chinese)) doi: 10.3969/j.issn.1004-6801.2014.05.008
    [5] DENG Z M, BI S F, SEZ A. Stochastic model updating using distance discrimination analysis[J]. Chinese Journal of Aeronautics, 2014, 27(5): 1188-1198. doi: 10.1016/j.cja.2014.08.008
    [6] 万华平, 任伟新, 黄天立. 基于贝叶斯推理的随机模型修正方法[J]. 中国公路学报, 2016, 29(4): 67-76, 95. (WAN Huaping, REN Weixin, HUANG Tianli. Stochastic model updating approach by using Bayesian inference[J]. China Journal of Highway and Transport, 2016, 29(4): 67-76, 95.(in Chinese) doi: 10.3969/j.issn.1001-7372.2016.04.009

    WAN Huaping, REN Weixin, HUANG Tianli. Stochastic model updating approach by using Bayesian inference[J]. China Journal of Highway and Transport, 2016, 29(4): 67-76, 95. (in Chinese)) doi: 10.3969/j.issn.1001-7372.2016.04.009
    [7] ZHAI X, FEI C W, CHOY Y S, et al. A stochastic model updating strategy-based improved response surface model and advanced Monte Carlo simulation[J]. Mechanical Systems and Signal Processing, 2017, 82: 323-338. doi: 10.1016/j.ymssp.2016.05.026
    [8] 陈喆, 何欢, 陈国平, 等. 考虑不确定性因素的有限元模型修正方法研究[J]. 振动工程学报, 2017, 30(6): 921-928. (CHEN Zhe, HE Huan, CHEN Guoping, et al. The research of finite element model updating method considering the uncertainty[J]. Journal of Vibration Engineering, 2017, 30(6): 921-928.(in Chinese)

    CHEN Zhe, HE Huan, CHEN Guoping, et al. The research of finite element model updating method considering the uncertainty[J]. Journal of Vibration Engineering, 2017, 30(6): 921-928. (in Chinese))
    [9] JALALI H, KHODAPARAST H H, MADINEI H, et al. Stochastic modelling and updating of a joint contact interface[J]. Mechanical Systems and Signal Processing, 2019, 129: 645-658. doi: 10.1016/j.ymssp.2019.04.003
    [10] ZHAO Y L, DENG Z M, ZHANG X J. A robust stochastic model updating method with resampling processing[J]. Mechanical Systems and Signal Processing, 2020, 136: 106494. doi: 10.1016/j.ymssp.2019.106494
    [11] 邓振鸿, 张保强, 苏国强, 等. 基于近似似然的频响函数不确定性模型修正[J]. 振动、测试与诊断, 2020, 40(3): 548-554, 628. (DENG Zhenhong, ZHANG Baoqiang, SU Guoqiang, et al. Uncertainty model updating of frequency response function based on approximate likelihood function[J]. Journal of Vibration, Measurement and Diagnosis, 2020, 40(3): 548-554, 628.(in Chinese)

    DENG Zhenhong, ZHANG Baoqiang, SU Guoqiang, et al. Uncertainty model updating of frequency response function based on approximate likelihood function[J]. Journal of Vibration, Measurement and Diagnosis, 2020, 40(3): 548-554, 628. (in Chinese))
    [12] 韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报, 2016, 37(11): 3197-3225. (HAN Zhonghua. Kriging surrogate model and its application to design optimization: a review of recent progress[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11): 3197-3225.(in Chinese)

    HAN Zhonghua. Kriging surrogate model and its application to design optimization: A review of recent progress[J]. Acta Aeronautica ET Astronautica Sinica, 2016, 37(11): 3197-3225. (in Chinese))
    [13] ARORA S, SINGH S. Butterfly optimization algorithm: a novel approach for global optimization[J]. Soft Computing, 2018, 23(3): 715-734.
    [14] 宋国明, 王厚军, 刘红, 等. 基于提升小波变换和SVM的模拟电路故障诊断[J]. 电子测量与仪器学报, 2010, 24(1): 17-22. (SONG Guoming, WANG Houjun, LIU Hong, et al. Analog circuit fault diagnosis using lifting wavelet transform and SVM[J]. Journal of Electronic Measurement and Instrument, 2010, 24(1): 17-22.(in Chinese) doi: 10.3724/SP.J.1187.2010.00017

    SONG Guoming, WANG Houjun, LIU Hong, et al. Analog circuit fault diagnosis using lifting wavelet transform and SVM[J]. Journal of Electronic Measurement And Instrument, 2010, 24(1): 17-22. (in Chinese)) doi: 10.3724/SP.J.1187.2010.00017
    [15] SWELDENS W. The lifting scheme: a construction of second generation wavelets[J]. SIAM Journal on Mathematical Analysis, 1998, 29(2): 511-546. doi: 10.1137/S0036141095289051
    [16] PANARETOS V M, YOAV ZEMEL Y. Statistical aspects of Wasserstein distances[J]. Annual Review of Statistics and Its Application, 2019, 6(1): 405-431. doi: 10.1146/annurev-statistics-030718-104938
    [17] 周平, 赵向志. 面向建模误差PDF形状与趋势拟合优度的动态过程优化建模[J]. 自动化学报, 2021, 47(10): 2402-2411. (ZHOU Ping, ZHAO Xiangzhi. Optimized modeling of dynamic process oriented towards modeling error PDF shape and goodness of fit[J]. Acta Automatica Sinica, 2021, 47(10): 2402-2411.(in Chinese)

    ZHOU Ping, ZHAO Xiangzhi. Optimized modeling of dynamic process oriented towards modeling error pdf shape and goodness of fit[J]. Acta Automatica Sinica, 2021, 47(10): 2402-2411. (in Chinese))
    [18] 肖先勇, 桂良宇, 李成鑫, 等. 基于Wasserstein距离的多电压暂降事件同源检测方法[J]. 电网技术, 2020, 44(12): 4684-4693. (XIAO Xianyong, GUI Liangyu, LI Chengxin, et al. Multiple voltage sag events homology detection based on Wasserstein distance[J]. Power System Technology, 2020, 44(12): 4684-4693.(in Chinese)

    XIAO Xianyong, GUI Liangyu, LI Chengxin, et al. Multiple voltage sag events homology detection based on Wasserstein distance[J]. Power System Technology, 2020, 44(12): 4684-4693. (in Chinese))
    [19] SEYEDALI M, ANDREW L. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95(5): 51-67.
  • 加载中
图(13) / 表(5)
计量
  • 文章访问数:  695
  • HTML全文浏览量:  297
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-10
  • 修回日期:  2021-06-17
  • 刊出日期:  2022-07-15

目录

    /

    返回文章
    返回