Blow-Up Behaviors of Solutions to Reaction-Diffusion Equations With Nonlocal Sources and Variable Exponents
-
摘要:
该文考虑了一类带有变指数非局部项的反应扩散方程的爆破问题。首先,由不动点原理,证明了问题解的局部存在性和唯一性。其次,利用上下解方法,给出在齐次Dirichlet边界条件下,问题的解在有限时间发生爆破的充分条件,即变指数大于零且初始值足够大,并对爆破时间的上下界进行了估计。
Abstract:The blow-up problems of the solutions are considered for reaction-diffusion equations with nonlocal sources and variable exponents. Firstly, the local existence and uniqueness of solutions to the problem were proved under the fixed-point theorem. Secondly, by means of the super- and sub-solution method, some sufficient conditions for the occurrence of finite-time blow-up were determined under the homogeneous Dirichlet boundary conditions, i.e., the variable exponent is positive and the initial value is large enough. Moreover, the estimates of upper and lower bounds of the blow-up time were given.
-
[1] WANG N, SONG X F, LV X H. Estimates for the blowup time of a combustion model with nonlocal heat sources[J]. Journal of Mathematical Analysis and Applications, 2016, 436(2): 1180-1195. doi: 10.1016/j.jmaa.2015.12.025 [2] PAYNE L E, PHILIPPIN G A. Blow-up in a class of non-linear parabolic problems with time-dependent coefficients under Robin type boundary conditions[J]. Applicable Analysis, 2012, 91(12): 2245-2256. doi: 10.1080/00036811.2011.598865 [3] 许然, 田娅, 秦瑶. 一类反应扩散方程的爆破时间下界估计[J]. 应用数学和力学, 2021, 42(1): 113-122XU Ran, TINA Ya, QIN Yao. Lower bounds of the blow-up time for a class of reaction diffusion equations[J]. Applied Mathematics and Mechanics, 2021, 42(1): 113-122.(in Chinese) [4] LI Y F, LIU Y, LIN C H. Blow-up phenomena for some nonlinear parabolic problems under mixed boundary conditions[J]. Nonlinear Analysis, 2010, 11(5): 3815-3823. doi: 10.1016/j.nonrwa.2010.02.011 [5] MU C L, DONG G C. Blow-up and existence for fast diffusion equations with general nonlinearities[J]. Acta Mathematicae Applicatae Sinica, 1999, 15(2): 126-131. doi: 10.1007/BF02720487 [6] 李远飞, 肖胜中, 陈雪姣. 非线性边界条件下具有变系数的热量方程解的存在性及爆破现象[J]. 应用数学和力学, 2021, 42(1): 92-101LI Yuanfei, XIAO Shengzhong, CHEN Xuejiao. Existence and blow-up phenomena of solutions to heat equations with variable coefficients under nonlinear boundary conditions[J]. Applied Mathematics and Mechanics, 2021, 42(1): 92-101.(in Chinese) [7] PAYNE L E, SCHAEFER P W. Bounds for blow-up time for the heat equation under nonlinear boundary conditions[J]. Proceedings of the Royal Society of Edinburgh, 2009, 139(6): 1289-1296. doi: 10.1017/S0308210508000802 [8] PAYNE L E, SCHAEFER P W. Lower bounds for blow-up time in parabolic problems under Neumann conditions[J]. Applicable Analysis, 2006, 85(10): 1301-1311. [9] 邓卫兵, 刘其林, 谢春红. 一类含非局部源的非线性退化扩散方程解的爆破性质[J]. 应用数学和力学, 2003, 24(11): 1204-1210 doi: 10.3321/j.issn:1000-0887.2003.11.016DENG Weibing, LIU Qilin, XIE Chunhong. The blowup properties for a class of nonlinear degenerate diffusion equation with nonlocal source[J]. Applied Mathematics and Mechanics, 2003, 24(11): 1204-1210.(in Chinese) doi: 10.3321/j.issn:1000-0887.2003.11.016 [10] CHAOUAI Z, EL HACHIMI A. Qualitative properties of weak solutions for p-Laplacian equations with nonlocal source and gradient absorption[J]. Bulletin of the Korean Mathematical Society, 2020, 57(4): 1003-1031. [11] WANG Y X, FANG Z B, YI S C. Lower bounds for blow-up time in nonlocal parabolic problem under Robin boundary conditions[J]. Applicable Analysis, 2019, 98(8): 1403-1414. doi: 10.1080/00036811.2018.1424329 [12] PINASCO J P. Blow-up for parabolic and hyperbolic problems with variable exponents[J]. Nonlinear Analysis, 2009, 71(3/4): 1094-1099. [13] WANG H, HE Y J. On blow-up of solutions for a semilinear parabolic equation involving variable source and positive initial energy[J]. Applied Mathematics Letters, 2013, 26(10): 1094-1099. [14] ZHOU J, YANG D. Upper bound estimate for the blow-up time of an evolution m-Laplace equation involving variable source and positive initial energy[J]. Computers and Mathematics With Applications, 2015, 69(12): 1463-1469. doi: 10.1016/j.camwa.2015.04.007 [15] BAGHAEI K, GHAEMI M B, HESAARAKI M. Lower bounds for the blow-up time in a semilinear parabolic problem involving a variable source[J]. Applied Mathematics Letters, 2014, 17: 49-52. [16] TALENTI G. Best constant in Sobolev inequality[J]. Annali di Matematica Pura ed Applicata, 1976, 110: 353-372. doi: 10.1007/BF02418013
计量
- 文章访问数: 508
- HTML全文浏览量: 185
- PDF下载量: 70
- 被引次数: 0