留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

内三角管式快速蓄放热单元的肋片拓扑优化

黄河 高佳徐 任智彬 赵明

黄河,高佳徐,任智彬,赵明. 内三角管式快速蓄放热单元的肋片拓扑优化 [J]. 应用数学和力学,2022,43(11):1238-1248 doi: 10.21656/1000-0887.420198
引用本文: 黄河,高佳徐,任智彬,赵明. 内三角管式快速蓄放热单元的肋片拓扑优化 [J]. 应用数学和力学,2022,43(11):1238-1248 doi: 10.21656/1000-0887.420198
HUANG He, GAO Jiaxu, REN Zhibin, ZHAO Ming. Topology Optimization of Fins for Rapid Heat Storage and Release in Triangular-Inside Tube Units[J]. Applied Mathematics and Mechanics, 2022, 43(11): 1238-1248. doi: 10.21656/1000-0887.420198
Citation: HUANG He, GAO Jiaxu, REN Zhibin, ZHAO Ming. Topology Optimization of Fins for Rapid Heat Storage and Release in Triangular-Inside Tube Units[J]. Applied Mathematics and Mechanics, 2022, 43(11): 1238-1248. doi: 10.21656/1000-0887.420198

内三角管式快速蓄放热单元的肋片拓扑优化

doi: 10.21656/1000-0887.420198
基金项目: 国家自然科学基金(51306120)
详细信息
    作者简介:

    黄河(1997—),男,硕士生(E-mail:15868151010@qq.com

    赵明(1975—),女,副教授,博士(通讯作者. E-mail:lightzm@126.com

  • 中图分类号: O414.13

Topology Optimization of Fins for Rapid Heat Storage and Release in Triangular-Inside Tube Units

  • 摘要:

    针对传统相变蓄热器传热速率低的问题,提出了一种内三角管式的蓄热器,并基于拓扑优化原理,以强化换热为目的,对其进行肋片设计,重构了拓扑结果,进而提取其拓扑特征重新设计肋片,分析了不同肋片设计对传热能力的影响。结果表明:内三角管式蓄热器相比传统圆管式蓄热器,蓄放热性能大大提高;安装拓扑重构肋片的蓄热器可以使蓄、放热时间缩短,传热效率提高;在蓄热过程中,分叉的拓扑特征可以提高自然对流作用;在放热过程中,安装拓扑重构肋片的蓄热器(火 积)耗散更小,可逆性更好,换热效率更高。

  • 图  1  相变蓄热器物理模型简图 (单位:mm)

    Figure  1.  Physical model diagrams of phase change accumulators (unit: mm)

    图  2  模型验证:(a) 网格无关性验证;(b) 时间步长验证;(c) 模拟与实验结果对比

    Figure  2.  Model validations: (a) the mesh assessment; (b) the time step assessment; (c) the comparison with experiment results

    图  3  蓄热(左)和放热(右)过程拓扑优化结果

    注 为了解释图中的颜色,读者可以参考本文的电子网页版本,后同。

    Figure  3.  Topology optimization results of thermal storage (left) and release (right) processes

    图  4  肋片重构和特征肋片设计(单位: mm)

    Figure  4.  The fin reconstruction and the characteristic fin design (unit: mm)

    图  5  熔化过程中的液相和温度分布

    Figure  5.  Liquid fractions and temperature distributions in the melting process

    图  6  液相分数和平均Nu数在熔化过程中的变化:(a) 液相分数;(b) $\overline {Nu} $

    Figure  6.  Changes of the liquid fraction and the average Nu number in the melting process: (a) the liquid fraction; (b) $\overline {Nu} $

    图  7  平均速度区域监测示意图

    Figure  7.  Schematic diagram of the regional monitoring of average velocities

    图  8  区域平均速度变化对比: (a) 区域I的平均速度;(b) 区域O的平均速度

    Figure  8.  Comparison of regional average velocity changes: (a) the average velocity in zone I; (b) the average velocity in zone O

    图  9  凝固过程中的液相和温度分布

    Figure  9.  Liquid fractions and temperature distributions in the solidification process

    图  10  液相分数和平均Nu数在凝固过程中的变化:(a) 液相分数β;(b) $\overline {Nu} $

    Figure  10.  Changes of the liquid fraction and the average Nu number in the solidification process: (a) the liquid fraction β; (b) $\overline {Nu} $

    图  11  凝固过程中的总(火 积)耗散

    Figure  11.  Total entransy dissipations in the solidification process

    表  1  物性参数表

    Table  1.   The physical property parameter table

    parameterRT82Cu
    solid density ${ { {\rho _{\text{s} } } } / {( { {\text{kg} } \cdot { {\text{m} }^{ { { - 3} } } }} )} }$9508 978
    liquid density ${ { {\rho _{\text{l} } } } / {( { {\text{kg} } \cdot { {\text{m} }^{ { { - 3} } } } } )} }$770
    heat capacity at constant pressure ${{{c_p}} /{( {{\text{J}} \cdot {\text{k}}{{\text{g}}^{{{ - 1}}}} \cdot {{\text{K}}^{{{ - 1}}}}} )}}$2 000381
    latent heat ${{{L_{\text{p}}}} / {( {{\text{J}} \cdot {\text{k}}{{\text{g}}^{{{ - 1}}}}} )}}$176 000
    phase change temperature interval $ {{{T_{{\text{pc}}}}} / {{{\text{K}}^{{{ - 1}}}}}} $350.15 ~ 358.15
    thermal conductivity ${\lambda /{( {{\text{W}} \cdot {{\text{m}}^{{{ - 1}}}} \cdot {{\text{K}}^{{{ - 1}}}}} )}}$0.2387.6
    dynamic viscosity ${\mu / {( {{\text{kg}} \cdot {{\text{m}}^{{{ - 1}}}} \cdot {{\text{s}}^{{{ - 1}}}}} )}}$0.034 99
    thermal expansion coefficient $ {\alpha /{{{\text{K}}^{{{ - 1}}}}}} $0.001
    下载: 导出CSV

    表  2  肋片设计参数表

    Table  2.   The fin design parameter table

    model number number of finsfin thickness d/mmfin proportion η/%
    model 34.72
    model 4240.44.60
    model 5240.44.56
    model 6244.75
    model 7240.89.12
    下载: 导出CSV
  • [1] JOUHARA H, KHORDEHGAH N, ALMAHMOUD S, et al. Waste heat recovery technologies and applications[J]. Thermal Science and Engineering Progress, 2018, 6: 268-289. doi: 10.1016/j.tsep.2018.04.017
    [2] BISTA S, HOSSEINI S E, OWENS E, et al. Performance improvement and energy consumption reduction in refrigeration systems using phase change material (PCM)[J]. Applied Thermal Engineering, 2018, 142: 723-735. doi: 10.1016/j.applthermaleng.2018.07.068
    [3] JIN X, SHI D, MEDINA M A, et al. Optimal location of PCM layer in building walls under Nanjing (China) weather conditions[J]. Journal of Thermal Analysis and Calorimetry, 2017, 129(3): 1767-1778. doi: 10.1007/s10973-017-6307-3
    [4] AGYENIM F, HEWITT N, EAMES P, et al. A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS)[J]. Renewable & Sustainable Energy Reviews, 2010, 14(2): 615-628.
    [5] ZOU D, MA X, LIU X, et al. Thermal performance enhancement of composite phase change materials (PCM) using graphene and carbon nanotubes as additives for the potential application in lithium-ion power battery[J]. International Journal of Heat and Mass Transfer, 2018, 120: 33-41. doi: 10.1016/j.ijheatmasstransfer.2017.12.024
    [6] SHEIKHOLESLAMI M, HAQ R, SHAFEE A, et al. Heat transfer simulation of heat storage unit with nanoparticles and fins through a heat exchanger[J]. International Journal of Heat and Mass Transfer, 2019, 135: 470-478. doi: 10.1016/j.ijheatmasstransfer.2019.02.003
    [7] ZHENG H, WANG C, LIU Q, et al. Thermal performance of copper foam/paraffin composite phase change material[J]. Energy Conversion and Management, 2018, 157: 372-381. doi: 10.1016/j.enconman.2017.12.023
    [8] PIZZOLATO A, SHARMA A, MAUTE K, et al. Design of effective fins for fast PCM melting and solidification in shell-and-tube latent heat thermal energy storage through topology optimization[J]. Applied Energy, 2017, 208: 210-227. doi: 10.1016/j.apenergy.2017.10.050
    [9] ISMAIL K A R, ALVES C L F, MODESTO M S. Numerical and experimental study on the solidification of PCM around a vertical axially finned isothermal cylinder[J]. Applied Thermal Engineering, 2001, 21(1): 53-77. doi: 10.1016/S1359-4311(00)00002-8
    [10] SCIACOVELLI A, GAGLIARDI F, VERDA V. Maximization of performance of a PCM latent heat storage system with innovative fins[J]. Applied Energy, 2015, 137: 707-715. doi: 10.1016/j.apenergy.2014.07.015
    [11] 夏天翔, 姚卫星. 连续体结构拓扑优化方法评述[J]. 航空工程进展, 2011, 2(1): 1-11 doi: 10.3969/j.issn.1674-8190.2011.01.001

    XIA Tianxiang, YAO Weixing. A survey of topology optimization of continuum structure[J]. Advances in Aeronautical Science and Engineering, 2011, 2(1): 1-11.(in Chinese) doi: 10.3969/j.issn.1674-8190.2011.01.001
    [12] HAN X, LIU H, XIE G, et al. Topology optimization for spider web heat sinks for electronic cooling[J]. Applied Thermal Engineering, 2021, 195: 117154. doi: 10.1016/j.applthermaleng.2021.117154
    [13] TIAN Y, LIU X, XU Q, et al. Bionic topology optimization of fins for rapid latent heat thermal energy storage[J]. Applied Thermal Engineering, 2021, 194: 117104. doi: 10.1016/j.applthermaleng.2021.117104
    [14] 游吟, 赵耀, 赵长颖, 等. 相变储热单元内肋片结构的拓扑优化[J]. 科学通报, 2019, 64(11): 1191-1199 doi: 10.1360/N972018-01134

    YOU Yin, ZHAO Yao, ZHAO Changying, et al. The topology optimization of the fin structure in latent heat storage[J]. Chinese Science Bulletin, 2019, 64(11): 1191-1199.(in Chinese) doi: 10.1360/N972018-01134
    [15] 郑宇豪, 赵明. 整体旋转式三角形管相变蓄热器性能及场协同分析[J]. 建模与仿真, 2021, 10(2): 292-304 doi: 10.12677/MOS.2021.102030

    ZHENG Yuhao, ZHAO Ming. Performance and field synergy analysis of integral rotating phase change heat accumulator with triangular tube[J]. Modeling and Simulation, 2021, 10(2): 292-304.(in Chinese) doi: 10.12677/MOS.2021.102030
    [16] YUAN Y, CAO X, XIANG B, et al. Effect of installation angle of fins on melting characteristics of annular unit for latent heat thermal energy storage[J]. Solar Energy, 2016, 136: 365-378. doi: 10.1016/j.solener.2016.07.014
    [17] TCHERNIAK D. Topology optimization of resonating structures using SIMP method[J]. International Journal for Numerical Methods in Engineering, 2002, 54(11): 1605-1622. doi: 10.1002/nme.484
    [18] 孙国民, 张效忠, 孙延华. 基于特征值分析的多尺度结构优化设计方法[J]. 应用数学和力学, 2019, 40(6): 630-640

    SUN Guomin, ZHANG Xiaozhong, SUN Yanhua. Multi-scale structure optimization design based on eigenvalue analysis[J]. Applied Mathematics and Mechanics, 2019, 40(6): 630-640.(in Chinese)
    [19] SVANBERG K. The method of moving asymptotes: a new method for structural optimization[J]. International Journal for Numerical Methods in Engineering, 1987, 24(2): 359-373. doi: 10.1002/nme.1620240207
    [20] KAMKARI B, SHOKOUHMAND H. Experimental investigation of phase change material melting in rectangular enclosures with horizontal partial fins[J]. International Journal of Heat and Mass Transfer, 2014, 78: 839-851. doi: 10.1016/j.ijheatmasstransfer.2014.07.056
    [21] GUO Z Y, ZHU H Y, LIANG X G. Entransy: a physical quantity describing heat transfer ability[J]. International Journal of Heat and Mass Transfer, 2007, 50(13/14): 2545-2556.
    [22] 韩光泽, 过增元. 导热能力损耗的机理及其数学表述[J]. 中国电机工程学报, 2007, 27(17): 98-102 doi: 10.3321/j.issn:0258-8013.2007.17.019

    HAN Guangze, GUO Zengyuan. Physical mechanism of heat conduction ability dissipation and its analytical expression[J]. Proceedings of the Chinese Society of Electrical Engineering, 2007, 27(17): 98-102.(in Chinese) doi: 10.3321/j.issn:0258-8013.2007.17.019
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  351
  • HTML全文浏览量:  218
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-12
  • 修回日期:  2021-10-21
  • 网络出版日期:  2022-09-29
  • 刊出日期:  2022-11-30

目录

    /

    返回文章
    返回