Magneto-Thermoelastic Coupling Dynamic Responses of Narrow Long Thin Plates Under Memory Effects and Size Effects
-
摘要:
引入记忆依赖微分的双相滞后热弹性理论能较完善地描述非Fourier导热现象,然而迄今尚未发现该理论综合考虑微尺度效应和磁、热、弹等多场耦合效应对材料力学行为的影响。通过考虑记忆依赖效应和非局部效应修正了双相滞后广义热弹性理论,基于改进后的理论研究了受周期性变化热源作用时窄长薄板的磁-热弹性耦合问题。首先建立问题的控制方程;然后结合边界条件与初值条件,利用Laplace变换和反变换技术对该问题进行求解;最后分别考察了磁场、相位滞后、时间延迟因子、核函数、非局部效应、时间对各无量纲量的影响,为微尺度材料的动态响应提供了有力参考依据。
Abstract:The dual-phase-lag thermoelasticity theory with the memory-dependent differential can perfectly describe the phenomenon of non-Fourier heat conduction, nevertheless, it has not been comprehensively considered: the mechanical responses of materials under the size-dependent effects and the multiphysics coupling effects such as magnetic, thermal and elastic fields. A modified dual-phase-lag thermoelasticity theory with memory-dependent effects and non-local effects was established. Based upon this theory, the magneto-thermoelastic coupling problem of narrow long thin plates subjected to cyclical heat sources was investigated. First, the governing equations for the problem were formulated. Then with the boundary conditions and initial conditions, the solution to the problem was obtained through the Laplace transform and the inverse transform techniques. Finally, the influences of the magnetic field, the phase lag, the time-delay, the kernel function, non-local effect and the time on the dimensionless quantities were investigated respectively. The work provides a powerful reference for the dynamic responses of micro-scale materials.
-
表 1 相关参数
Table 1. Related parameters
parameter value thermal conductivity K/(N·K−1·s−1) 386 specific heat at constant strain $ {C_E} $/($ {m^2} $/K) 383.1 Lamé constant $ \mu $/(N/m2) 3.86 × 1010 Lamé constant $ \lambda $/(N/m2) 7.76 × 1010 density $ \rho $/(kg/m3) 8 954 magnetic permeability in vacuum $ {\mu _0} $/( N·s2/C2) 1.256 × 10-6 electric permittivity in vacuum $ {\varepsilon _0} $/( C2·N−1·m−2) 10−9/(36π) reference temperature $ {T_0} $/K 293 -
[1] POVSTENKO Y Z. Fractional radial heat conduction in an infinite medium with a cylindrical cavity and associated thermal stresses[J]. Mechanics Research Communications, 2010, 37(4): 436-440. doi: 10.1016/j.mechrescom.2010.04.006 [2] YOUSSEF H M. Generalized thermoelastic infinite medium with spherical cavity subjected to moving heat source[J]. Computational Mathematics and Modeling, 2010, 21(2): 212-225. doi: 10.1007/s10598-010-9066-6 [3] EI-KARAMANY A S, EZZAT M A. On fractional thermoelasticity[J]. Mathematics and Mechanics of Solids, 2011, 3(3): 334-346. [4] WANG J L, LI H F. Surpassing the fractional derivative: concept of the memory-dependent derivative[J]. Computers & Mathematics With Applications, 2011, 62(3): 1562-1567. [5] EZZAT M A, EI-KARAMANY A S, EI-BARY A A. On dual-phase-lag thermoelasticity theory with memory-dependent derivative[J]. Mechanics of Composite Materials & Structures, 2017, 24(11): 908-916. [6] LOTFY K, SARKAR N. Memory-dependent derivatives for photothermal semiconducting medium in generalized thermoelasticity with two temperature[J]. Mechanics of Time-Dependent Materials, 2017, 21(4): 519-534. doi: 10.1007/s11043-017-9340-5 [7] WANG Y Z, ZHANG X B, SONG X N. A generalized theory of thermoelasticity based on thermomass and its uniqueness theorem[J]. Acta Mechanics, 2014, 225(3): 797-808. doi: 10.1007/s00707-013-1001-4 [8] LORD H W, SHULMAN Y. A generalized dynamical theory of thermoelasticity[J]. Journal of the Mechanics and Physics of Solids, 1967, 15(5): 299-309. doi: 10.1016/0022-5096(67)90024-5 [9] IGNACZAK J, HETNARSKI R B. Generalized thermoelasticity: mathematical formulation[J]. Encyclopedia of Thermal Stresses, 1999, 22: 451-476. doi: 10.1080/014957399280832 [10] GREEN A E, NAGHDI P M. Thermoelasticity without energy dissipation[J]. Journal of Elasticity, 1993, 31(3): 189-208. doi: 10.1007/BF00044969 [11] YOUSSEF H M. Theory of two-temperature-generalized thermoelasticity[J]. IMA Journal of Applied Mathematics, 2006, 71(3): 383-390. doi: 10.1093/imamat/hxh101 [12] KUANG Z B. Variational principles for generalized dynamical theory of thermopiezoelectricity[J]. Acta Mechanica, 2009, 203(1/2): 1-11. [13] CHANDRASEKHARAIAH D S. Hyperbolic thermoelasticity: a review of recent literature[J]. Applied Mechanics Reviews, 1998, 51(12): 705-729. doi: 10.1115/1.3098984 [14] 戴天民. 微极连续统的耦合场理论的再研究(Ⅱ): 微极热压电弹性理论和电磁热弹性理论[J]. 应用数学和力学, 2002, 23(3): 229-238 doi: 10.3321/j.issn:1000-0887.2002.03.002DAI Tianmin. Restudy of coupled field theories for micropolar continua (Ⅱ): thermopiezoelectricity and magnetothermoelasticity[J]. Applied Mathematics and Mechanics, 2002, 23(3): 229-238.(in Chinese) doi: 10.3321/j.issn:1000-0887.2002.03.002 [15] 林 C W. 基于非局部弹性应力场理论的纳米尺度效应研究: 纳米梁的平衡条件、控制方程以及静态挠度[J]. 应用数学和力学, 2010, 31(1): 35-50 doi: 10.3879/j.issn.1000-0887.2010.01.005LIM C W. On the truth of nanoscale for nanobeams based on nonlocal elastic stress field theory: equilibrium, governing equation and static deflection[J]. Applied Mathematics and Mechanics, 2010, 31(1): 35-50.(in Chinese) doi: 10.3879/j.issn.1000-0887.2010.01.005 [16] 周保良, 李志远, 黄丹. 二维瞬态热传导的PDDO分析[J]. 应用数学和力学, 2022, 43(6): 660-668ZHOU Baoliang, LI Zhiyuan, HUANG Dan. PDDO analysis of 2D transient heat conduction problems[J]. Applied Mathematics and Mechanics, 2022, 43(6): 660-668.(in Chinese) [17] ERINGEN A C. Nonlocal continuum field theories[J]. Applied Mechanics Reviews, 2003, 56(2): 391-398. [18] 张培, 何天虎. 考虑非局部效应和记忆依赖微分的广义热弹问题[J]. 力学学报, 2018, 50(3): 508-516 doi: 10.6052/0459-1879-18-079ZHANG Pei, HE Tianhu. A generalized thermaelastic problem with nonlacal effect and memory-dependent derivative[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 508-516.(in Chinese) doi: 10.6052/0459-1879-18-079 [19] 马金涛, 何天虎. 基于非局部理论的一维广义热弹问题研究[J]. 甘肃科学学报, 2018, 30(5): 4-9 doi: 10.16468/j.cnki.issn1004-0366.2018.05.002MA Jintao, HE Tianhu. Study on one dimensional generalized thermoelastic problem based on non local theory[J]. Journal of Gansu Sciences, 2018, 30(5): 4-9.(in Chinese) doi: 10.16468/j.cnki.issn1004-0366.2018.05.002 [20] SUR A. Non-local memory-dependent heat conduction in a magneto-thermoelastic problem[J]. Waves in Random and Complex Media, 2022, 32(1): 251-271. doi: 10.1080/17455030.2020.1770369 [21] EI-KARAMANY A S, EZZAT M A. Modified Fourier’s law with time delay and kernel function: application in thermoelasticity[J]. Journal of Thermal Stresses, 2015, 38(7): 811-834. doi: 10.1080/01495739.2015.1040309 [22] BIOT M A. Thermoelasticity and irreversible thermodynamics[J]. Journal of Applied Physics, 1956, 27(3): 240-253. doi: 10.1063/1.1722351 [23] TZOU D Y. A unified field approach for heat conduction from macro- to micro-scales[J]. Journal of Heat Transfer, 1995, 117(1): 8-16. doi: 10.1115/1.2822329 [24] HONIG G, HIRDES U. A method for the numerical inversion of Laplace transforms[J]. Journal of Computational and Applied Mathematics, 1984, 10(1): 113-132. doi: 10.1016/0377-0427(84)90075-X [25] BRANCIK L. Programs for fast numerical inversion of Laplace transforms in MATLAB language environment[C]//Proceedings of the 7th Conference MATLAB'99, Czech Republic, Prague. 1999: 27-39.