留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类分数阶修正的不稳定Schrödinger方程的新精确解

刘静静 孙峪怀

刘静静,孙峪怀. 一类分数阶修正的不稳定Schrödinger方程的新精确解 [J]. 应用数学和力学,2022,43(10):1185-1194 doi: 10.21656/1000-0887.420228
引用本文: 刘静静,孙峪怀. 一类分数阶修正的不稳定Schrödinger方程的新精确解 [J]. 应用数学和力学,2022,43(10):1185-1194 doi: 10.21656/1000-0887.420228
LIU Jingjing, SUN Yuhuai. New Exact Solutions to a Class of Fractional-Order Modified Unstable Schrödinger Equations[J]. Applied Mathematics and Mechanics, 2022, 43(10): 1185-1194. doi: 10.21656/1000-0887.420228
Citation: LIU Jingjing, SUN Yuhuai. New Exact Solutions to a Class of Fractional-Order Modified Unstable Schrödinger Equations[J]. Applied Mathematics and Mechanics, 2022, 43(10): 1185-1194. doi: 10.21656/1000-0887.420228

一类分数阶修正的不稳定Schrödinger方程的新精确解

doi: 10.21656/1000-0887.420228
基金项目: 四川省教育厅自然科学基金(重点项目)(2012ZA135)
详细信息
    作者简介:

    刘静静(1996—),女,硕士生(E-mail: 1462181092@qq.com

    孙峪怀(1963—),男,教授,博士,硕士生导师(通讯作者. E-mail: sunyuhuai63@163.com

  • 中图分类号: O175

New Exact Solutions to a Class of Fractional-Order Modified Unstable Schrödinger Equations

  • 摘要:

    研究了分数阶修正的不稳定Schrödinger方程(FMUSE),该方程描述了光脉冲在非均匀光纤系统中传播的色散、非线性、增益或吸收变化的普适问题。首先适当地利用广义分数波变换将FMUSE转化为常微分方程,分离实部和虚部并分别令为零,得到了色散关系。再利用修改的(G'/G)-展开法,求得了一系列带参数的新精确解析解,其中包括三角函数解、双曲函数解和有理函数解,并给出了保证解存在的约束条件。最后当参数取特殊值时得到暗孤波和周期波解。

  • 图  1  $ \lambda = 3,{\kern 1pt} \mu = 2,{\kern 1pt} K = 1,{\kern 1pt} {\kern 1pt} v = 1,{\kern 1pt} {\kern 1pt} \beta = - 1,{\kern 1pt} $ $c = 1,{\kern 1pt} {\kern 1pt} s = - 15,{\kern 1pt} {\kern 1pt} \alpha = {1}/{2}$时,${q}_{2.1.1}$的图像

    Figure  1.  The graphic corresponding to ${q}_{2.1.1}$ ($ \lambda = 3,{\kern 1pt} \mu = 2,{\kern 1pt} K = 1,{\kern 1pt} {\kern 1pt} v = 1,{\kern 1pt} {\kern 1pt} \beta = - 1,{\kern 1pt} $ $c = 1,{\kern 1pt} {\kern 1pt} s = - 15,{\kern 1pt} {\kern 1pt} \alpha = {1}/{2}$)

    图  2  $\lambda = 2,\;\mu = 2,\;K = 1,\;v = 1,\;\beta = - 1,\; c = 1,\;s =-5,\;\alpha = {1}/{2}$时,$ {q_{2.2.1}} $的图像

    Figure  2.  The graphic corresponding to $ {q_{2.2.1}} $ ($\lambda = 2,{\kern 1pt} \mu = 2,{\kern 1pt} K = 1, v = 1, $$ {\kern 1pt} \beta = - 1,{\kern 1pt}$ $c = 1,{\kern 1pt} {\kern 1pt} s = - 5,{\kern 1pt} {\kern 1pt} \alpha = {1}/{2}$)

    图  3  $\lambda = 2,\; \mu = 2, \;K = 1, \; v = 1,\; \beta = - 1,\;c = 1, \; s = - 5, \; \alpha = {1}/{2}$时,$ {q_{2.2.2}} $的图像

    Figure  3.  The graphic corresponding to $ {q_{2.2.2}} $ ($\lambda = 2, \mu = 2, K = 1, v = 1, $$ \beta = - 1,$$c = 1, s = - 5, \alpha = {1}/{2}$)

    图  4  $ \lambda = 2, \mu = 2, K = 1, v = 1, \beta = - 1, $ $c = 1, \alpha = {1}/{2}$时,$ {q_{4.2.1}} $的图像

    Figure  4.  The graphic corresponding to $ {q_{4.2.1}} $($\lambda = 2, \mu = 2, K = 1, v = 1, \beta = - 1, $$c = 1, \alpha = {1}/{2}$)

  • [1] ZULFIQAR A, AHMAD J. Soliton solutions of fractional modified unstable Schrödinger equation using exp-function method[J]. Results in Physics, 2020, 19: 103476. doi: 10.1016/j.rinp.2020.103476
    [2] MIRZAZADEH M, YILDIRIM Y, YASAR E, et al. Optical solitons and conservation law of Kundu-Eckhaus equation[J]. Optik, 2018, 154: 551-557. doi: 10.1016/j.ijleo.2017.10.084
    [3] ZHOU Q, MIRZAZADEH M, ZERRAD E, et al. Bright, dark, and singular solitons in optical fibers with spatio-temporal dispersion and spatially dependent coefficients[J]. Journal of Modern Optics, 2016, 63(10): 950-954. doi: 10.1080/09500340.2015.1111456
    [4] KARA A H, RAZBOROVA P, BISWAS A. Solitons and conservation laws of coupled Ostrovsky equation for internal waves[J]. Applied Mathematics and Computation, 2015, 258: 95-99. doi: 10.1016/j.amc.2015.01.093
    [5] SEADAWY A R, IQBAL M, LU D. Construction of soliton solutions of the modify unstable nonlinear Schrödinger dynamical equation in fiber optics[J]. Indian Journal of Physics, 2020, 94: 823-832. doi: 10.1007/s12648-019-01532-5
    [6] HONG B, LU D, CHEN W. Exact and approximate solutions for the fractional Schrödinger equation with variable coefficients[J]. Advances in Differences Equations, 2019, 2019(1): 370. doi: 10.1186/s13662-019-2313-z
    [7] DODD R K, EILBECK J C, GIBBON J D, et al. Solitons and Nonlinear Wave Equations[M]. Academic Press Inc, 1982.
    [8] SAVESCU M, BHRAWY A H, ALSHAERY A A, et al. Optical solitons in nonlinear directional couplers with spatio-temporal dispersion[J]. Journal of Modern Optics, 2014, 61(5): 441-458. doi: 10.1080/09500340.2014.894149
    [9] ARSHAD M, SEADAWY A R, LU D. Bright-dark solitary wave solutions of generalized higher-order nonlinear Schrödinger equation and its applications in optics[J]. Journal of Electromagn Waves and Applications, 2017, 31(16): 1711-1121. doi: 10.1080/09205071.2017.1362361
    [10] YANG Z J, ZHANG S M, LI X L, et al. Variable sinh-Gaussian solitons in nonlocal nonlinear Schrödinger equation[J]. Applied Mathematics Letters, 2018, 82: 64-70. doi: 10.1016/j.aml.2018.02.018
    [11] JIA R R, GUO R. Breather and rogue wave solutions for the (2+1)-dimensional nonlinear Schrödinger-Maxwell-Bloch equation[J]. Applied Mathematics Letters, 2019, 93: 117-123. doi: 10.1016/j.aml.2019.02.001
    [12] 江林, 孙峪怀, 张雪, 等.

    2+1)维时空分数阶Nizhnik-Novikov-Veslov方程的精确行波解及其分支[J]. 应用数学和力学, 2018, 39(11): 1313-1322. (JIANG Lin, SUN Yuhuai, ZHANG Xue, et al. Exact traveling wave solutions and bifurcations of (2+1)-dimensional space-time fractional-order Nizhnik-Novikov-Veslov equations[J]. Applied Mathematics and Mechanics, 2018, 39(11): 1313-1322. (in Chinese)
    [13] 石兰芳, 聂子文. 应用全新(G'/G)-展开方法求解广义非线性Schrödinger方程和耦合非线性Schrödinger方程组[J]. 应用数学和力学, 2017, 38(5): 539-552

    SHI Lanfang, NIE Ziwen. Solutions to the nonlinear Schrödinger equation and coupled nonlinear Schrödinger equations with a new (G'/G)-expansion method[J]. Applied Mathematics and Mechanics, 2017, 38(5): 539-552.(in Chinese)
    [14] ZAYED E, GEPREEL K A. The Modified (G′/G)-Expansion Method and Its Applications to Construct Exact Solutions for Nonlinear PDEs[M]. World Scientific and Engineering Academy and Society (WSEAS), 2011.
    [15] KUMAR V. Modified (G'/G)-expansion method for finding traveling wave solutions of the coupled Benjamin-Bona-Mahony-KdV equation[J]. Journal of Ocean Engineering and Science, 2019, 4(3): 252-255. doi: 10.1016/j.joes.2019.04.008
    [16] JUMARIE G. Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results[J]. Computers and Mathematics With Applications, 2006, 51(9/10): 1367-1376.
  • 加载中
图(4)
计量
  • 文章访问数:  524
  • HTML全文浏览量:  227
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-03
  • 修回日期:  2021-09-06
  • 网络出版日期:  2022-10-09
  • 刊出日期:  2022-10-31

目录

    /

    返回文章
    返回