留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于LiToSim平台的疲劳寿命评估LtsFatigue软件开发及应用

彭梦瑶 顾水涛 周洋靖 王世猛 冯志强

彭梦瑶,顾水涛,周洋靖,王世猛,冯志强. 基于LiToSim平台的疲劳寿命评估LtsFatigue软件开发及应用 [J]. 应用数学和力学,2022,43(9):976-986 doi: 10.21656/1000-0887.420277
引用本文: 彭梦瑶,顾水涛,周洋靖,王世猛,冯志强. 基于LiToSim平台的疲劳寿命评估LtsFatigue软件开发及应用 [J]. 应用数学和力学,2022,43(9):976-986 doi: 10.21656/1000-0887.420277
PENG Mengyao, GU Shuitao, ZHOU Yangjing, WANG Shimeng, FENG Zhiqiang. Development and Application of Fatigue Life Evaluation Software LtsFatigue Based on LiToSim[J]. Applied Mathematics and Mechanics, 2022, 43(9): 976-986. doi: 10.21656/1000-0887.420277
Citation: PENG Mengyao, GU Shuitao, ZHOU Yangjing, WANG Shimeng, FENG Zhiqiang. Development and Application of Fatigue Life Evaluation Software LtsFatigue Based on LiToSim[J]. Applied Mathematics and Mechanics, 2022, 43(9): 976-986. doi: 10.21656/1000-0887.420277

基于LiToSim平台的疲劳寿命评估LtsFatigue软件开发及应用

doi: 10.21656/1000-0887.420277
基金项目: 国家自然科学基金(11772274)
详细信息
    作者简介:

    彭梦瑶(1995—),女,博士生 (E-mail:pengmy@cqu.edu.cn

    顾水涛(1979—),男,教授 (通讯作者. E-mail:gust@cqu.edu.cn

    周洋靖(1988—),男,博士 (E-mail:zhouyangjing@litosim.com

    王世猛(1991—),男,硕士 (E-mail:newstart1201105@sina.cn

    冯志强(1963—),男,教授,博士生导师 (E-mail:zhiqiang.feng@univ-evry.fr

  • 中图分类号: O346.2

Development and Application of Fatigue Life Evaluation Software LtsFatigue Based on LiToSim

  • 摘要:

    针对结构的疲劳问题,考虑随机载荷作用,在自主开发的LiToSim平台基础上,嵌入结构疲劳分析数值计算程序。基于LiToSim平台开发LtsFatigue疲劳软件,运用时域疲劳算法,通过雨流计数法对应力时程曲线处理并计算结构疲劳寿命;引入频域疲劳算法,基于应力响应功率谱根据应力循环分布估算疲劳寿命;通过齿轮算例进行疲劳分析,与商业软件对比,验证了LtsFatigue定制化疲劳软件时域法、频域法的计算精度,同时,频域算法有效提高了计算效率,凸显了LtsFatigue软件的优势。基于LiToSim平台的LtsFatigue定制化疲劳软件开发,对大型复杂结构的疲劳仿真具有重要的应用价值。

  • 图  1  结构疲劳分析流程

    Figure  1.  The structural fatigue analysis process

    图  2  LiToSim平台架构图

    Figure  2.  The LiToSim platform architecture diagram

    图  3  基于LiToSim的定制化疲劳软件LtsFatigue组织结构图

    注 为了解释图中的颜色,读者可以参考本文的电子网页版本,后同。

    Figure  3.  The organizational structure of the LiToSim software fatigue module (LtsFatigue)

    图  4  基于LiToSim的定制化疲劳软件LtsFatigue界面

    Figure  4.  The interface for customized software LtsFatigue based on LiToSim

    图  5  材料数据库

    Figure  5.  Material databases

    图  6  疲劳结果绘制

    Figure  6.  The fatigue results plot

    图  7  基于LiToSim的定制化疲劳软件LtsFatigue分析流程

    Figure  7.  The analysis process of customized software LtsFatigue based on LiToSim

    图  8  齿轮示意图

    Figure  8.  Schematic diagram of the gear

    图  9  有限元分析结果,第一主应力对比:(a) LiToSim有限元分析结果,第一主应力;(b) ABAQUS有限元结果分析结果,第一主应力

    Figure  9.  For finite element analysis (FEA) results, the comparison of the 1st principal stress: (a) LiToSim FEA results; (b) ABAQUS FEA results

    图  10  节点9018应力响应时程曲线

    Figure  10.  The time-history curve of stress response at node 9018

    图  11  LtsFatigue与Fe-safe时域疲劳寿命对比:(a) LtsFatigue疲劳寿命结果,时域法;(b) Fe-safe疲劳寿命结果,时域法

    Figure  11.  Comparison of the fatigue life between LtsFatigue and ABAQUS/Fe-safe time domain: (a) the LtsFatigue fatigue life-time domain; (b) the Fe-safe fatigue life-time domain

    图  12  LtsFatigue时域与频域疲劳寿命:(a) 时域法;(b) 频域法

    Figure  12.  LtsFatigue time domain and frequency domain fatigue lives: (a) the fatigue life-time domain; (b) the fatigue life-frequency domain

    表  1  应力响应统计特性

    Table  1.   Stress response statistical characteristics

    Sm/ MPaσX/ MPaSkKuα2
    node 901852.36 106.490.0783.240.63
    下载: 导出CSV

    表  2  LtsFatigue与Fe-safe 计算精度和计算效率对比

    Table  2.   Comparison of computational accuracy and computational efficiency between LtsFatigue and Fe-safe

    softwaremethod${\rm{lg} }\;N_{\rm{f} }$percentage difference ε/%calculation time t/s
    Fe-safetime domain0.934 372.06
    LtsFatiguetime domain0.938 10.4175.57
    LtsFatiguefrequency domain0.908 02.8139.63
    下载: 导出CSV
  • [1] 徐灏. 结构疲劳强度研究的现况及进展[J]. 机械强度, 1980(1): 1-6 doi: 10.16579/j.issn.1001.9669.1980.01.001

    XU Hao. Current situation and development of structural fatigue strength research[J]. Journal of Mechanical Strength, 1980(1): 1-6.(in Chinese) doi: 10.16579/j.issn.1001.9669.1980.01.001
    [2] 尚德广. 疲劳强度理论[M]. 北京: 科学出版社, 2017.

    SHANG Deguang. Fatigue Strength Theory[M]. Beijing: Science Press, 2017. (in Chinese)
    [3] 徐灏. 疲劳强度[M]. 北京: 高等教育出版社, 1988.

    XU Hao. Fatigue Strength[M]. Beijing: Higher Education Press, 1988. (in Chinese)
    [4] 欧进萍, 王光远. 结构随机振动[M]. 北京: 高等教育出版社, 1998.

    OU Jinping, WANG Guangyuan. Random Vibration of Structures[M]. Beijing: Higher Education Press, 1998. (in Chinese)
    [5] 冯胜, 程燕平, 赵亚丽, 等. 线性疲劳损伤累积理论的研究[J]. 哈尔滨工业大学学报, 2003, 35(5): 608-610 doi: 10.3321/j.issn:0367-6234.2003.05.024

    FENG Sheng, CHENG Yanping, ZHAO Yali, et al. Linear fatigue damage cumulation theory[J]. Journal of Harbin Institute of Technology, 2003, 35(5): 608-610.(in Chinese) doi: 10.3321/j.issn:0367-6234.2003.05.024
    [6] 冯胜, 程燕平, 赵亚丽, 等. 非线性疲劳损伤累积理论研究[J]. 哈尔滨工业大学学报, 2003, 35(12): 1507-1509 doi: 10.3321/j.issn:0367-6234.2003.12.030

    FENG Sheng, CHENG Yanping, ZHAO Yali, et al. Unlinear fatigue damage cumulative theory[J]. Journal of Harbin Institute of Technology, 2003, 35(12): 1507-1509.(in Chinese) doi: 10.3321/j.issn:0367-6234.2003.12.030
    [7] RYCHLIK I. Characterization of Random Fatigue Loads[M]. Vienna: Springer, 1993.
    [8] REPETTO M P. Cycle counting methods for bi-modal stationary Gaussian processes[J]. Probabilistic Engineering Mechanics, 2005, 20(3): 229-238. doi: 10.1016/j.probengmech.2005.05.004
    [9] ENDO T, MATSUISHI M, MITSUNAGA K, et al. Rain flow method, the proposal and the applications[J]. Bulletin of the Kyushu Institute of Technology Science & Technology, 1974.
    [10] 姜言. 基于T-B谱方法的风致疲劳分析以及在桥梁主梁抖振疲劳中的应用[D]. 博士学位论文. 成都: 西南交通大学, 2019.

    JIANG Yan. Wind induced fatigue analysis using T-B spectrum method and its application on buffeting fatigue of bridge girder[D]. PhD Thesis. Chengdu: Southwest Jiaotong University, 2019. (in Chinese)
    [11] DONG W, MOAN T, GAO Z. Fatigue reliability analysis of the jacket support structure for offshore wind turbine considering the effect of corrosion and inspection[J]. Reliability Engineering & System Safety, 2012, 106: 11-27.
    [12] YANG Y, BASHIR M, WANG J, et al. Wind-wave coupling effects on the fatigue damage of tendons for a 10 MW multi-body floating wind turbine[J]. Ocean Engineering, 2020, 217(1): 107909.
    [13] LOW Y M. An algorithm for accurate evaluation of the fatigue damage due to multimodal and broadband processes[J]. Probabilistic Engineering Mechanics, 2011, 26(3): 435-446. doi: 10.1016/j.probengmech.2011.01.002
    [14] WIRSCHING P H, LIGHT M C. Fatigue under wide band random stresses[J]. Journal of the Structural Division, 1980, 106(7): 1593-1607. doi: 10.1061/JSDEAG.0005477
    [15] ZHAO W, BAKER M J. On the probability density function of rainflow stress range for stationary Gaussian processes[J]. International Journal of Fatigue, 1992, 14(2): 121-135. doi: 10.1016/0142-1123(92)90088-T
    [16] DIRLIK T. Application of computers in fatigue analysis[D]. PhD Thesis. West Midlands: University of Warwick, 1985.
    [17] BENASCIUTTI D, TOVO R. Spectral methods for lifetime prediction under wide-band stationary random processes[J]. International Journal of Fatigue, 2005, 27(8): 867-877. doi: 10.1016/j.ijfatigue.2004.10.007
    [18] 冯志强, 刘建涛, 彭磊, 等. 自主CAE平台及计算力学软件研发新进展[J]. 西南交通大学学报, 2016, 51(3): 519-524 doi: 10.3969/j.issn.0258-2724.2016.03.010

    FENG Zhiqiang, LIU Jiantao, PENG Lei, et al. New development of CAE platform and computational mechanics software[J]. Journal of Southwest Jiaotong University, 2016, 51(3): 519-524.(in Chinese) doi: 10.3969/j.issn.0258-2724.2016.03.010
    [19] KIHL D P, SARKANI S. Mean stress effects in fatigue of welded steel joints[J]. Probabilistic Engineering Mechanics, 1999, 14(1/2): 97-104.
    [20] BENASCIUTTI D. Some analytical expressions to measure the accuracy of the “equivalent von Mises stress” in vibration multiaxial fatigue[J]. Journal of Sound and Vibration, 2014, 333(18): 4326-4340. doi: 10.1016/j.jsv.2014.04.047
    [21] 朱颖. 金属屋盖构件风致疲劳损伤估计[D]. 博士学位论文. 北京: 北京交通大学, 2018.

    ZHU Ying. Assessment of wind-induced fatigue damage of metal roof components[D]. PhD Thesis. Beijing: Beijing Jiaotong University, 2018. (in Chinese)
    [22] FRENDAHL M, RYCHLIK I. Rainflow analysis: Markov method[J]. International Journal of Fatigue, 1993, 15(4): 265-272. doi: 10.1016/0142-1123(93)90375-Z
    [23] DING J, CHEN X. Fatigue damage evaluation of broad-band Gaussian and non-Gaussian wind load effects by a spectral method[J]. Probabilistic Engineering Mechanics, 2015, 41: 139-154. doi: 10.1016/j.probengmech.2015.06.005
    [24] 叶彦鹏, 顾水涛, 刘敏, 等. 基于LiToSim平台的海上风机过渡段优化软件开发[J]. 应用数学和力学, 2021, 42(5): 441-451

    YE Yanpeng, GU Shuitao, LIU Min, et al. Optimization software development for offshore turbine transition structures based on LiToSim[J]. Applied Mathematics and Mechanics, 2021, 42(5): 441-451.(in Chinese)
    [25] 周洋靖, 冯志强, 宁坡, 等. 金属成形数值模拟算法及软件开发[J]. 西南交通大学学报, 2019, 54(4): 855-862 doi: 10.3969/j.issn.0258-2724.20170442

    ZHOU Yangjing, FENG Zhiqiang, NING Po, et al. Numerical algorithm and software development for metal forming[J]. Journal of Southwest Jiaotong University, 2019, 54(4): 855-862.(in Chinese) doi: 10.3969/j.issn.0258-2724.20170442
    [26] LIU Y, CHENG L, ZENG Q, et al. PCLab-A software with interactive graphical user interface for Monte Carlo and finite element analysis of microstructure-based layered composites[J]. Advances in Engineering Software, 2015, 90: 53-62. doi: 10.1016/j.advengsoft.2015.06.016
    [27] PENG L, FENG Z, JOLI P, et al. LiToTac: an interactive-interface software for finite element analysis of multiple contact dynamics[J]. Computer Modeling in Engineering & Sciences, 2019, 118(1): 111-137.
    [28] 姜殿恒, 陈飙松, 张盛, 等. 基于SiPESC平台的声子晶体能带结构分析算法研究及软件实现[J/OL]. 工程力学, 2022. DOI: 10.6052/j.issn.1000-4750.2021.07.0563.

    JIANG Dianheng, CHEN Biaosong, ZHANG Sheng, et al. Reserach and software implementation of energy band structure analysis algorithm of phononic crystals based on SiPESC platform[J/OL]. Engineering Mechanics, 2022. DOI: 10.6052/j.issn.1000-4750.2021.07.0563. (in Chinese)
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  432
  • HTML全文浏览量:  282
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-13
  • 录用日期:  2022-03-08
  • 修回日期:  2022-01-18
  • 网络出版日期:  2022-09-01
  • 刊出日期:  2022-09-30

目录

    /

    返回文章
    返回