留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

时空多项式配点法求解三维Burgers方程

曹艳华 张姊同 李楠

曹艳华,张姊同,李楠. 时空多项式配点法求解三维Burgers方程 [J]. 应用数学和力学,2022,43(9):1045-1052 doi: 10.21656/1000-0887.420282
引用本文: 曹艳华,张姊同,李楠. 时空多项式配点法求解三维Burgers方程 [J]. 应用数学和力学,2022,43(9):1045-1052 doi: 10.21656/1000-0887.420282
CAO Yanhua, ZHANG Zitong, LI Nan. A Space-Time Polynomial Collocation Method for Solving 3D Burgers Equations[J]. Applied Mathematics and Mechanics, 2022, 43(9): 1045-1052. doi: 10.21656/1000-0887.420282
Citation: CAO Yanhua, ZHANG Zitong, LI Nan. A Space-Time Polynomial Collocation Method for Solving 3D Burgers Equations[J]. Applied Mathematics and Mechanics, 2022, 43(9): 1045-1052. doi: 10.21656/1000-0887.420282

时空多项式配点法求解三维Burgers方程

doi: 10.21656/1000-0887.420282
基金项目: 国家自然科学基金(11461026);江西省第十一批研究生优质课程和案例建设资助项目;江西省研究生创新专项资金(YC2020-S313)
详细信息
    作者简介:

    曹艳华(1978—),女,博士(E-mail:yanhuacao@yeah.net

    张姊同(1996—),女,硕士(E-mail:2499158784@qq.com

    李楠(1995—),女,硕士(通讯作者. E-mail:734699069@qq.com

  • 中图分类号: O241.8

A Space-Time Polynomial Collocation Method for Solving 3D Burgers Equations

  • 摘要:

    Burgers方程是一类应用广泛的非线性偏微分方程,方程中的非线性项难以处理。该文提出一种新的时空多项式配点法——多项式特解法求解三维Burgers方程。求解过程分为两步:第一步,对三维Burgers方程中的线性导数项(包括时间导数项),求出相应的多项式特解。第二步,将求出的多项式特解作为基函数,对三维Burgers方程中剩余的非线性项进行迭代求解。与时空多项式函数作为基函数对三维Burgers方程进行直接求解相比,该算法简单易行,得到的近似解精度非常高,算法极其稳定,对于教学过程中提高学生的编程能力,加深对高维Burgers方程的理解能力以及Burgers方程的实际应用具有重要意义。

  • 图  1  配点图:(a) 正方形区域规则取点;(b) 星形区域规则取点;(c) 正方形区域随机取点;(d) 星形区域随机取点(篮圈:内点;红星:边界点)

    Figure  1.  The collocation point diagram: (a) the regular domain with regular points; (b) the irregular domain with regular points; (c) the regular domain with random points; (d) the irregular domain with random points (blue circles: interior collocation points; red stars: boundary collocation points)

    图  2  时空区域中星形区域随机取点(篮圈:内点;红星:边界点)

    注 为了解释图中的颜色,读者可以参考本文的电子网页版本,后同。

    Figure  2.  An irregular domain with random points in the space-time domain (blue circles: interior collocation points; red stars: boundary collocation points)

    图  3  空间求解区域:(a) 正方体区域;(b) bumpy-shaped区域

    Figure  3.  The spatial solution domains: (a) the cubic domain; (b) the bumpy-shaped domain

    图  4  ${\tau}=2,\;Re=1$时,两种区域的计算结果

    Figure  4.  Results for ${\tau}=2$ and ${Re}=1$

    图  5  ${\tau}=100,\;Re=1$时,两种区域的计算结果

    Figure  5.  Results for ${\tau}=100$ and ${Re}=1$

    图  6  ${\tau}=2$时,正方体区域上系数矩阵的条件数:(a) 多项式特解系数矩阵的条件数;(b) 多项式基函数系数矩阵的条件数

    Figure  6.  Matrix condition numbers of the cubic domain for ${\tau}=2$: (a) the condition number of polynomial particular solutions; (b) the condition number of polynomial basis functions

    图  7  ${\tau}=1,\;\mu=1$时,两种区域的计算结果

    Figure  7.  Results for ${\tau}=1$ and $\mu=1$

    图  8  ${\tau}=1,\;\mu=0.5$时,两种区域的计算结果

    Figure  8.  Results for ${\tau}=1$ and $\mu=0.5$

    表  1  $n_{{{\rm{i}}}}=3\;819,\;n_{{{\rm{d}}}}=5\;220,\;n_{{{\rm{t}}}}=1\;919,\;{\tau}=1$时,两种区域多项式特解的平方根误差

    Table  1.   The RMSE with $n_{{{\rm{i}}}}=3\;819,\; n_{{{\rm{d}}}}=5\;220,\; n_{{{\rm{t}}}}=1\;919,\; {\tau}=1$ for cubic and bumpy-shaped domains

    ordercubic ${\delta_{\rm{RMSE1}}}$bumpy-shape ${\delta_{\rm{RMSE2}}}$CPU time t/s
    47.65E−41.21E−40.375
    64.74E−51.84E−61.886
    82.42E−65.13E−910.290
    101.31E−75.13E−1038.707
    下载: 导出CSV

    表  2  $n_{{{\rm{i}}}}=3\;819,\;n_{{{\rm{d}}}}=5\;220,\;n_{{{\rm{t}}}}=1\;919,\;{\tau}=1$时,两种区域多项式基函数的平方根误差

    Table  2.   The RMSE with $n_{{{\rm{i}}}}=3\;819,\; n_{{{\rm{d}}}}=5\;220,\; n_{{{\rm{t}}}}=1\;919, \;{\tau}=1$ for cubic and bumpy-shaped domains

    ordercubic $ {\delta_{\rm{RMSE1} } }$bumpy-shape $ {\delta_{\rm{RMSE2} } }$CPU time t/s
    42.14E−28.22E−20.454
    62.04E−27.70E−23.418
    82.02E−25.53E−223.440
    102.00E−25.51E−2126.793
    下载: 导出CSV

    表  3  $n_{{{\rm{i}}}}=3\;819,\;n_{{{\rm{d}}}}=5\;220,\;n_{{{\rm{t}}}}=1\;919,\;\mu=0.5$时,两种区域多项式基函数的平方根误差和计算所需时间

    Table  3.   The RMSE with $n_{{{\rm{i}}}}=3\;819, n_{{{\rm{d}}}}=5\;220, n_{{{\rm{t}}}}=1\;919, \mu=0.5$ for cubic and bumpy-shaped domains

    ordercubic $\delta_{{\rm{RMSE}}1}$bumpy-shape $\delta_{{\rm{RMSE}}2}$CPU time t/s
    44.44E−33.49E−20.590
    64.40E−39.85E−32.367
    84.35E−35.78E−39.780
    104.32E−37.27E−337.786
    下载: 导出CSV
  • [1] BURGER J M. A mathematical model illustrating the theory of turbulence[J]. Advances in Applied Mechanics, 1948, 1: 171-199.
    [2] HOPF E. The partial differential equation $u_t + uu_x =\mu_xx $[J]. Communications on Pure and Applied Mathematics, 1950, 3(3): 201-230. doi: 10.1002/cpa.3160030302
    [3] HASSANIEN I A, SALAMA A A, HOSHAM H A J. Fourth-order finite difference method for solving Burgers’ equation[J]. Applied Mathematics and Computation, 2005, 170(2): 781-800. doi: 10.1016/j.amc.2004.12.052
    [4] COLE J D. On a quasi-linear parabolic equation occurring in aerodynamics[J]. Quarterly of Applied Mathematics, 1951, 9(3): 225-236. doi: 10.1090/qam/42889
    [5] 包立平, 胡玉博, 吴立群. 具有初值间断的Burgers方程奇摄动解[J]. 应用数学和力学, 2020, 41(7): 807-816

    BAO Liping, HU Yubo, WU Liqun. Singularly perturbed solutions of Burgers equations with initial value discontinuities[J]. Applied Mathematics and Mechanics, 2020, 41(7): 807-816.(in Chinese)
    [6] 包立平, 洪文珍. 一维弱噪声随机Burgers方程的奇摄动解[J]. 应用数学和力学, 2018, 39(1): 113-122.

    BAO Liping, HONG Wenzhen. Singular perturbation solutions to 1D stochastic Burgers equations under weak noises[J]. Applied Mathematics and Mechanics, 2018, 39(1): 113-122. (in Chinese)
    [7] 朱位秋. 几类非线性系统对白噪声参激与/或外激平稳响应的精确解[J]. 应用数学和力学, 1990, 11(2): 155-164

    ZHU Weiqiu. Exact solutions for stationary responses of several classes of nonlinear systems to parametric and/or external white noise excitations[J]. Applied Mathematics and Mechanics, 1990, 11(2): 155-164.(in Chinese)
    [8] GULSU M. A finite difference approach for solution of Burgers’ equation[J]. Applied Mathematics and Computation, 2006, 175(2): 1245-1255. doi: 10.1016/j.amc.2005.08.042
    [9] CALDWELL J, WANLESS P. Solution of Burgers’ equation for large Reynolds number using finite elements with moving nodes[J]. Applied Mathematical Modelling, 1987, 11(3): 211-214. doi: 10.1016/0307-904X(87)90005-9
    [10] TURGUT Z, ASLAN Y. The semi-approximate approach for solving Burgers’ equation with high Reynolds number[J]. Applied Mathematics and Computation, 2005, 163(1): 131-145. doi: 10.1016/j.amc.2004.01.032
    [11] HASHEMIAN A, SHODJA H M. A meshless approach for solution of Burgers’ equation[J]. Journal of Computational and Applied Mathematics, 2008, 220(1): 226-239.
    [12] ZHANG X H, OUYANG J, ZHANG L. Element-free characteristic Galerkin method for Burgers’ equation[J]. Engineering Analysis With Boundary Elements, 2009, 33(3): 356-362. doi: 10.1016/j.enganabound.2008.07.001
    [13] CHEN R, WU Z. Applying multiquadric quasi-interpolation to solve Burgers’ equation[J]. Applied Mathematics and Computation, 2006, 172(1): 472-484. doi: 10.1016/j.amc.2005.02.027
    [14] HON Y C, MAO X Z. An efficient numerical scheme for Burgers’ equation[J]. Applied Mathematics and Computation, 1999, 95(1): 37-50.
    [15] MOHAMMADI M, MOKHTARI R, PANAHIPOUR H. A Galerkin-reproducing kernel method: application to the 2D nonlinear coupled Burgers’ equations[J]. Engineering Analysis With Boundary Elements, 2013, 37(12): 1642-1652. doi: 10.1016/j.enganabound.2013.09.005
    [16] ZHANG X, TIAN H, CHEN W. Local method of approximate particular solutions for two-dimensional unsteady Burgers’ equations[J]. Computers and Mathematics With Applications, 2014, 66(12): 2425-2432. doi: 10.1016/j.camwa.2013.10.009
    [17] ZHENG H, ZHANG C, WANG Y. Band structure computation of in-plane elastic waves in 2D phononic crystals by a meshfree local RBF collocation method[J]. Engineering Analysis With Boundary Elements, 2016, 66: 77-90. doi: 10.1016/j.enganabound.2016.01.012
    [18] TEZDUYAR T E, SATHE S, KEEDY R. Space-time finite element techniques for computation of fluid-structure interactions[J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195(17/18): 2002-2027. doi: 10.1016/j.cma.2004.09.014
    [19] KLAIJ C M, DER VAN J J, DER VAN H V. Space-time discontinuous Galerkin method for the compressible Navier-Stokes equations[J]. Journal of Computational Physics, 2006, 217(2): 589-611. doi: 10.1016/j.jcp.2006.01.018
    [20] MOHAMMED H, AHMED N, ABDELLATIF C. Space-time localized radial basis function collocation method for solving parabolic and hyperbolic equations[J]. Engineering Analysis With Boundary Elements, 2016, 67: 152-163. doi: 10.1016/j.enganabound.2016.03.009
    [21] DANGAL T R, CHEN C S, LIN J. Polynomial particular solutions for solving elliptic partial differential equations[J]. Computers and Mathematics With Applications, 2017, 73(1): 60-70. doi: 10.1016/j.camwa.2016.10.024
    [22] CAO Y H, CHEN C S, ZHENG H. Space-time polynomial particular solutions method for solving time-dependent problems[J]. Numerical Heat Transfer, Part B: Fundamentals, 2020, 77(3): 181-194. doi: 10.1080/10407790.2019.1693199
    [23] CAO Y H, LI N, ZHANG Z T. The method of polynomial particular solutions for solving ordinary differential equations[J]. Mathematica Applicata, 2020, 33(2): 295-307.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  406
  • HTML全文浏览量:  263
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-13
  • 修回日期:  2022-07-08
  • 网络出版日期:  2022-08-29
  • 刊出日期:  2022-09-30

目录

    /

    返回文章
    返回