SQP Methods for Mathematical Programs With Switching Constraints
-
摘要:
存零约束优化(MPSC)问题是近年来提出的一类新的优化问题,因存零约束的存在,使得常用的约束规范不满足,以至于现有算法的收敛性结果大多不能直接应用于该问题。应用序列二次规划(SQP)方法求解该问题,并证明在存零约束的线性独立约束规范下,子问题解序列的聚点为原问题的Karush-Kuhn-Tucker点。同时为了完善各稳定点之间的关系,证明了强平稳点与KKT点的等价性。最后数值结果表明,序列二次规划方法处理这类问题是可行的。
Abstract:The mathematical program with switching constraint (MPSC) problem makes a new-type optimization issue in recent years. Due to the existence of switching constraints, the common constraint specification is not satisfied, so that the convergence results of existing algorithms can not be directly applied to this problem. The sequential quadratic programming (SQP) method was applied to solve the problem, and to prove that the clustering point of the solution sequence of the subproblem is the Karush-Kuhn-Tucker point of the original problem under the linear independent constraint specification with the switching constraint. At the same time, in order to improve the relationship between stationary points, the equivalence between the strong stationary point and the KKT point was proved. Finally, the numerical results show that, the sequential quadratic programming method is feasible to deal with this type of problems.
-
表 1 MPSCs数值结果
Table 1. MPSCs numerical results
example ${\boldsymbol{x}}^*$ ${\boldsymbol{x}}'$ S N T 1 (1,1,1) (1.0,1.0,1.0) 1 19 0.0070 2 (0,0) (0.0,0.0) 1 4 0.0043 3 (0,0) (−0.0,−0.0) 1 17 0.0065 4 (0,0) (−0.0,0.0) 1 36 0.0082 表 2 投资组合数值结果
Table 2. Portfolio numerical results
$n$ S N T 50 1 24 0.1685 100 1 28 0.6690 200 1 36 3.3620 500 0.96 49 61.2914 800 0.90 59 1387.5846 1000 0.86 63 2336.6510 1200 0.82 69 4425.9890 -
[1] MEHLITZ P. Stationarity conditions and constraint qualifications for mathematical programs with switching constraints[J]. Mathematical Programming, 2020, 181(1): 149-186. doi: 10.1007/s10107-019-01380-5 [2] MEHLITZ P. On the linear independence constraint qualification in disjunctive programming[J]. Optimization, 2020, 69(10): 2241-2277. doi: 10.1080/02331934.2019.1679811 [3] LUO Z Q, PANG J S, RALPH D. Mathematical Programs With Equilibrium Constraints[M]. Cambridge: Cambridge University Press, 1996. [4] ACHTZIGER W, KANZOW C. Mathematical programs with vanishing constraints: optimality conditions and constraint qualifications[J]. Mathematical Programming, 2008, 114(1): 69-99. doi: 10.1007/s10107-006-0083-3 [5] LIANG Y C, YE J J. New optimality conditions and exact penalty for mathematical programs with switching constraints[J]. Journal of Optimization Theory and Applications, 2021, 190: 1-31. doi: 10.1007/s10957-021-01879-y [6] FLETCHER R, LEYFFER S, RALPH D, et al. Local convergence of SQP methods for mathematical programs with equilibrium constraints[J]. SIAM Journal on Optimization, 2006, 17(1): 259-286. doi: 10.1137/S1052623402407382 [7] 朱志斌, 罗志军, 曾吉文. 互补约束均衡问题一个新的磨光技术[J]. 应用数学和力学, 2007, 28(10): 1253-1260. (ZHU Zhibin, LUO Zhijun, ZENG Jiwen. Complementary constraint equalization problem a new polishing technique[J]. Applied Mathematics and Mechanics, 2007, 28(10): 1253-1260.(in Chinese)ZHU Zhibin, LUO Zhijun, ZENG Jiwen.Complementary constraint equalization problem a new polishing technique[J]. Applied Mathematics and Mechanics, 2007, 28(10): 1253-1260. (in Chinese) [8] ITO K, KUNISCH K. Augmented Lagrangian-SQP methods for nonlinear optimal constol problems of tracking type[J]. SIAM Journal on Control and Optimization, 1996, 34(3): 874-891. doi: 10.1137/S0363012994261707 [9] YU Y H, GAO L. Nonmonotone line search algorithm for constrained minimax problems[J]. Journal of Optimization Theory and Application, 2002, 115: 419-446. doi: 10.1023/A:1020896407415 [10] LING C, QI L Q, ZHOU G L, et al. Global convergence of a robust smoothing SQP method for semi-infinite programming[J]. Journal of Optimization Theory and Application, 2006, 129: 147-164. doi: 10.1007/s10957-006-9049-0 [11] WRIGHT J. Modifying SQP for degenerate problems[J]. SIAM Journal on Optimization, 2002, 13(2): 470-497. doi: 10.1137/S1052623498333731 [12] 朱志斌, 简金宝, 张聪. 非线性互补约束均衡问题的一个SQP算法[J]. 应用数学和力学, 2009, 30(5): 613-622. (ZHU Zhibin, JIAN Jinbao, ZHANG Cong. An SQP algorithm for mathematical programs with nonlinear complementarity constraints[J]. Applied Mathematics and Mechanics, 2009, 30(5): 613-622.(in Chinese) doi: 10.3879/j.issn.1000-0887.2009.05.012ZHU Zhibin, JIAN Jinbao, ZHANG Cong. An SQP algorithm for mathematical programs with nonlinear complementarity constraints[J]. Applied Mathematics and Mechanics, 2009, 30(5): 613-622. (in Chinese) doi: 10.3879/j.issn.1000-0887.2009.05.012 [13] 王宜举, 修乃华. 非线性最优化理论与方法[M]. 北京: 科学出版社, 2019.WANG Yiju, XIU Naihua. Theory and Method of Nonlinear Optimization[M]. Beijing: Science Press, 2019. (in Chinese) [14] FRANGIONI A, GRNTILE C. SDP diagonalizations and perspective cuts for a class of nonseparable MIQP[J]. Operations Research Letters, 2007, 35(2): 181-185. doi: 10.1016/j.orl.2006.03.008