留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

存零约束优化问题的序列二次方法

罗美铃 李高西 黄应全 刘丽颖

罗美铃,李高西,黄应全,刘丽颖. 存零约束优化问题的序列二次方法 [J]. 应用数学和力学,2022,43(7):792-801 doi: 10.21656/1000-0887.420294
引用本文: 罗美铃,李高西,黄应全,刘丽颖. 存零约束优化问题的序列二次方法 [J]. 应用数学和力学,2022,43(7):792-801 doi: 10.21656/1000-0887.420294
LUO Meiling, LI Gaoxi, HUANG Yingquan, LIU Liying. SQP Methods for Mathematical Programs With Switching Constraints[J]. Applied Mathematics and Mechanics, 2022, 43(7): 792-801. doi: 10.21656/1000-0887.420294
Citation: LUO Meiling, LI Gaoxi, HUANG Yingquan, LIU Liying. SQP Methods for Mathematical Programs With Switching Constraints[J]. Applied Mathematics and Mechanics, 2022, 43(7): 792-801. doi: 10.21656/1000-0887.420294

存零约束优化问题的序列二次方法

doi: 10.21656/1000-0887.420294
基金项目: 国家自然科学基金(11901068);重庆市自然科学基金(cstc2019jcyj-msxmX0760;cstc2021jcyj-msxmX0499)
详细信息
    作者简介:

    罗美铃(1998—),女,硕士生(E-mail:hana_lml@163.com)

    李高西(1988—),男,博士(通讯作者. E-mail:ligaoxicn@163.com)

  • 中图分类号: O211

SQP Methods for Mathematical Programs With Switching Constraints

  • 摘要:

    存零约束优化(MPSC)问题是近年来提出的一类新的优化问题,因存零约束的存在,使得常用的约束规范不满足,以至于现有算法的收敛性结果大多不能直接应用于该问题。应用序列二次规划(SQP)方法求解该问题,并证明在存零约束的线性独立约束规范下,子问题解序列的聚点为原问题的Karush-Kuhn-Tucker点。同时为了完善各稳定点之间的关系,证明了强平稳点与KKT点的等价性。最后数值结果表明,序列二次规划方法处理这类问题是可行的。

  • 表  1  MPSCs数值结果

    Table  1.   MPSCs numerical results

    example${\boldsymbol{x}}^*$${\boldsymbol{x}}'$SNT
    1(1,1,1)(1.0,1.0,1.0)1190.0070
    2(0,0)(0.0,0.0)140.0043
    3(0,0)(−0.0,−0.0)1170.0065
    4(0,0)(−0.0,0.0)1360.0082
    下载: 导出CSV

    表  2  投资组合数值结果

    Table  2.   Portfolio numerical results

    $n$SNT
    501240.1685
    1001280.6690
    2001363.3620
    5000.964961.2914
    8000.90591387.5846
    10000.86632336.6510
    12000.82694425.9890
    下载: 导出CSV
  • [1] MEHLITZ P. Stationarity conditions and constraint qualifications for mathematical programs with switching constraints[J]. Mathematical Programming, 2020, 181(1): 149-186. doi: 10.1007/s10107-019-01380-5
    [2] MEHLITZ P. On the linear independence constraint qualification in disjunctive programming[J]. Optimization, 2020, 69(10): 2241-2277. doi: 10.1080/02331934.2019.1679811
    [3] LUO Z Q, PANG J S, RALPH D. Mathematical Programs With Equilibrium Constraints[M]. Cambridge: Cambridge University Press, 1996.
    [4] ACHTZIGER W, KANZOW C. Mathematical programs with vanishing constraints: optimality conditions and constraint qualifications[J]. Mathematical Programming, 2008, 114(1): 69-99. doi: 10.1007/s10107-006-0083-3
    [5] LIANG Y C, YE J J. New optimality conditions and exact penalty for mathematical programs with switching constraints[J]. Journal of Optimization Theory and Applications, 2021, 190: 1-31. doi: 10.1007/s10957-021-01879-y
    [6] FLETCHER R, LEYFFER S, RALPH D, et al. Local convergence of SQP methods for mathematical programs with equilibrium constraints[J]. SIAM Journal on Optimization, 2006, 17(1): 259-286. doi: 10.1137/S1052623402407382
    [7] 朱志斌, 罗志军, 曾吉文. 互补约束均衡问题一个新的磨光技术[J]. 应用数学和力学, 2007, 28(10): 1253-1260. (ZHU Zhibin, LUO Zhijun, ZENG Jiwen. Complementary constraint equalization problem a new polishing technique[J]. Applied Mathematics and Mechanics, 2007, 28(10): 1253-1260.(in Chinese)

    ZHU Zhibin, LUO Zhijun, ZENG Jiwen.Complementary constraint equalization problem a new polishing technique[J]. Applied Mathematics and Mechanics, 2007, 28(10): 1253-1260. (in Chinese)
    [8] ITO K, KUNISCH K. Augmented Lagrangian-SQP methods for nonlinear optimal constol problems of tracking type[J]. SIAM Journal on Control and Optimization, 1996, 34(3): 874-891. doi: 10.1137/S0363012994261707
    [9] YU Y H, GAO L. Nonmonotone line search algorithm for constrained minimax problems[J]. Journal of Optimization Theory and Application, 2002, 115: 419-446. doi: 10.1023/A:1020896407415
    [10] LING C, QI L Q, ZHOU G L, et al. Global convergence of a robust smoothing SQP method for semi-infinite programming[J]. Journal of Optimization Theory and Application, 2006, 129: 147-164. doi: 10.1007/s10957-006-9049-0
    [11] WRIGHT J. Modifying SQP for degenerate problems[J]. SIAM Journal on Optimization, 2002, 13(2): 470-497. doi: 10.1137/S1052623498333731
    [12] 朱志斌, 简金宝, 张聪. 非线性互补约束均衡问题的一个SQP算法[J]. 应用数学和力学, 2009, 30(5): 613-622. (ZHU Zhibin, JIAN Jinbao, ZHANG Cong. An SQP algorithm for mathematical programs with nonlinear complementarity constraints[J]. Applied Mathematics and Mechanics, 2009, 30(5): 613-622.(in Chinese) doi: 10.3879/j.issn.1000-0887.2009.05.012

    ZHU Zhibin, JIAN Jinbao, ZHANG Cong. An SQP algorithm for mathematical programs with nonlinear complementarity constraints[J]. Applied Mathematics and Mechanics, 2009, 30(5): 613-622. (in Chinese) doi: 10.3879/j.issn.1000-0887.2009.05.012
    [13] 王宜举, 修乃华. 非线性最优化理论与方法[M]. 北京: 科学出版社, 2019.

    WANG Yiju, XIU Naihua. Theory and Method of Nonlinear Optimization[M]. Beijing: Science Press, 2019. (in Chinese)
    [14] FRANGIONI A, GRNTILE C. SDP diagonalizations and perspective cuts for a class of nonseparable MIQP[J]. Operations Research Letters, 2007, 35(2): 181-185. doi: 10.1016/j.orl.2006.03.008
  • 加载中
计量
  • 文章访问数:  492
  • HTML全文浏览量:  236
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-26
  • 修回日期:  2021-11-23
  • 刊出日期:  2022-07-15

目录

    /

    返回文章
    返回