留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

充液弹性毛细管低温相变的力学分析

陶泽 李墨筱 提飞 刘勇岗 刘少宝 卢天健

陶泽, 李墨筱, 提飞, 刘勇岗, 刘少宝, 卢天健. 充液弹性毛细管低温相变的力学分析[J]. 应用数学和力学, 2021, 42(10): 1045-1061. doi: 10.21656/1000-0887.420301
引用本文: 陶泽, 李墨筱, 提飞, 刘勇岗, 刘少宝, 卢天健. 充液弹性毛细管低温相变的力学分析[J]. 应用数学和力学, 2021, 42(10): 1045-1061. doi: 10.21656/1000-0887.420301
TAO Ze, LI Moxiao, TI Fei, LIU Yonggang, LIU Shaobao, LU Tianjian. Mechanics of Low-Temperature Phase Transition in Liquid-Filled Elastic Capillary Tube[J]. Applied Mathematics and Mechanics, 2021, 42(10): 1045-1061. doi: 10.21656/1000-0887.420301
Citation: TAO Ze, LI Moxiao, TI Fei, LIU Yonggang, LIU Shaobao, LU Tianjian. Mechanics of Low-Temperature Phase Transition in Liquid-Filled Elastic Capillary Tube[J]. Applied Mathematics and Mechanics, 2021, 42(10): 1045-1061. doi: 10.21656/1000-0887.420301

充液弹性毛细管低温相变的力学分析

doi: 10.21656/1000-0887.420301
基金项目: 

江苏省自然科学基金(BK20190382)

11902155)

江苏高校优势学科建设工程项目基金

国家自然科学基金(12032010

江苏省仿生功能材料重点实验基金

详细信息
    作者简介:

    陶泽(1997—),男,硕士(E-mail: ztao@nuaa.edu.cn);刘少宝(1988—),男,副研究员,博士,硕士生导师(通讯作者. E-mail: sbliu@nuaa.edu.cn);卢天健(1964—),男,教授,博士,博士生导师(通讯作者. E-mail: tjlu@nuaa.edu.cn).

    通讯作者:

    刘少宝(1988—),男,副研究员,博士,硕士生导师(通讯作者. E-mail: sbliu@nuaa.edu.cn)

  • 中图分类号: O343

Mechanics of Low-Temperature Phase Transition in Liquid-Filled Elastic Capillary Tube

Funds: 

11902155)

The National Natural Science Foundation of China(12032010

  • 摘要: 充液弹性毛细管广泛存在于生物体(如毛细血管、植物导管等)和工程领域(如微流控冰阀门、制冷系统热管、MEMS微通道谐振器等).低温工作环境中,充液弹性毛细管内部的液柱会发生相变并引发冻胀效应,从而导致管壁的变形、损伤乃至断裂.该文建立并求解了考虑温度梯度、界面张力及液体冻胀作用的弹性毛细管平衡方程,分析了液柱低温相变过程中毛细管壁的径向和环向应力,发现管壁应力分布受热毛细弹性数和冻毛细弹性数的影响,且影响大小跟壁厚相关.该研究不仅有助于理解生物体内充液弹性毛细管冻胀失效机制,还可为MEMS微流控芯片的抗冻胀失效设计提供理论指导.
  • BOWDEN R. Neuroanatomy: an illustrated colour text[J]. Clinical Anatomy,1996,9(1): 349.
    [2]YANG S, GONG X, QI Y, et al. Comparative study of variations in mechanical stress and strain of human blood vessels: mechanical reference for vascular cell mechano-biology[J]. Biomechanics and Modeling in Mechanobiology,2020,19(2): 519-531.
    [3]BABU A M, MENON A. Distribution of gum and gum-resin ducts in plant body: certain familiar features and their significance[J]. Flora,1990,184(4): 257-261.
    [4]DARHUBER A A, TROIAN S M. 表面应力调制的微流控技术的驱动原理[J]. 力学进展, 2007,37(1): 113-129.(DARHUBER A A, TROIAN S M. Principles of microfluidic a ctuation by modulation of surface stresses[J]. Advances in Mechanics,2007,37(1): 113-129.(in Chinese))
    [5]黄永光, 刘世炳, 陈涛, 等. 基于微通道构型的微流体流动控制研究[J]. 力学进展, 2009,39(1): 69-78.(HUANG Yongguang, LIU Shibing, CHEN Tao, et al. Studies on microfluid flow controls based on the configuration of microchannel[J]. Advances in Mechanics,2009,39(1): 69-78.(in Chinese))
    [6]YAO S C, TANG X, HSIEH C C, et al. Micro-electro-mechanical systems (MEMS)-based micro-scale direct methanol fuel cell development[J]. Energy,2006,31(5): 636-649.
    [7]XUAN X, SINTON D, LI D. Thermal end effects on electroosmotic flow in a capillary[J]. International Journal of Heat and Mass Transfer,2004,47(14/16): 3145-3157.
    [8]PETTIGREW K, KIRSHBERG J, YERKES K, et al. Performance of a MEMS based micro capillary pumped loop for chip-level temperature control[C]//IEEE International Conference on Micro Electro Mechanical Systems. 2001: 427-430.
    [9]闫寒, 张文明. 微纳通道谐振器检测与表征中的动力学问题[J]. 力学进展, 2019,49(1): 274-311.(YAN Han, ZHANG Wenming. Dynamics problems of micro/nano channel resonators for detection and characterization[J]. Advances in Mechanics,2019,49(1): 274-311.(in Chinese))
    [10]LANDERS J P. Handbook of Capillary Electrophoresis[M]. 2nd ed. Crc Press, 1996.
    [11]ISSAQ H J, CHAN K C, LI Q, et al. Multidimensional high performance liquid chromatography-capillary electrophoresis separation of a protein digest: an update[J]. Electrophoresis,2001,22(6): 1133-1135.
    [12]MIRZAJANZADEH M, DESHPANDE V S, FLECK N A. The swelling of cellulose foams due to liquid transport[J]. Journal of the Mechanics and Physics of Solids,2020,136(1): 103707.
    [13]CAMPANA D, DI P J, SAITA F A. A 2-D model of Rayleigh instability in capillary tubes: surfactant effects[J]. International Journal of Multiphase Flow,2004,30(5): 431-454.
    [14]BICO J, REYSSAT E, ROMAN B. Elastocapillarity: when surface tension deforms elastic solids[J]. Annual Review of Fluid Mechanics,2018,50(1): 629-659.
    [15]HOMSCHOTEN J W V, ESCALANTE M, TAS N R, et al. Elastocapillary filling of deformable nanochannels[J]. Journal of Applied Physics,2007,101(9): 094310.
    [16]SINGH K, LISTER J R, VELLA D. A fluid-mechanical model of elastocapillary coalescence[J]. Journal of Fluid Mechanics,2014,745(2): 621-646.
    [17]DAS S, MARCHAND A, ANDREOTTI B, et al. Elastic deformation due to tangential capillary forces[J]. Physics of Fluids,2011,23(7): 827.
    [18]HADJITTOFIS A, LISTER J R, SINGH K, et al. Evaporation effects in elastocapillary aggregation[R/OL]. 2016. [2021-10-14]. https://arxiv.org/pdf/1506.07241.pdf.
    [19]SMALYUKH I I, CHERNYSHUK S, LEV B I, et al. Ordered droplet structures at the liquid crystal surface and elastic-capillary colloidal interactions[J]. Physical Review Letters,2004,93(11): 117801.
    [20]HOBERG T B, VERNEUIL E, HOSOI A E. Elastocapillary flows in flexible tubes[J]. Physics of Fluids,2014,26(12): 122103.
    [21]XUAN C, BIGGINS J. Finite wavelength surface-tension driven instabilities in soft solids, including instability in a cylindrical channel through an elastic solid[J]. Physical Review E,2016,94(2): 023107.
    [22]LIU S, WU Y, YANG F, et al. Vibration of a liquid-filled capillary tube[J]. Journal of the Mechanical Behavior of Biomedical Materials,2020,106: 103745.
    [23]WU Y, LI M, YIN J, et al. Hydrostatic pressure and interfacial tension induce mode instability in wave propagation along a liquid-filled microtubule[J]. Physics of Fluids,2020,32(3): 031901.
    [24]MAZOUCHI A, HOMSY G M. Thermocapillary migration of long bubbles in cylindrical capillary tubes[J]. Physics of Fluids,2000,12(3): 542-549.
    [25]RAO P, LI T, WU Z, et al. Ductile “ice”: frozen hydrogels with high ductility and compressive yielding strength[J]. Extreme Mechanics Letters,2019,28: 43-49.
    [26]MORELLE X P, ILLEPERUMA W R, TIAN K, et al. Highly stretchable and tough hydrogels below water freezing temperature[J]. Advanced Materials,2018,30(35): 1801541.
    [27]COUSSY O. Poromechanics of freezing materials[J]. Journal of the Mechanics and Physics of Solids,2005,53(8): 1689-1718.
    [28]RABIN Y, OLSON P, TAYLOR M J, et al. Gross damage accumulation on frozen rabbit liver due to mechanical stress at cryogenic temperatures[J]. Cryobiology,1997,34(4): 394-405.
    [29]RABIN Y, STEIF P S. Thermal stresses in a freezing sphere and its application to cryobiology[J]. Journal of Applied Mechanics,1998,65(2): 328-333.
    [30]GILPIN R R. The effects of dendritic ice formation in water pipes[J]. International Journal of Heat and Mass Transfer,1977,20(6): 693-699.
    [31]GILPIN R R. Modes of ice formation and flow blockage that occur while filling a cold pipe[J]. Cold Regions Science and Technology, 1981,5(2): 163-171.
    [32]ALEXIADES V. Mathematical Modeling of Melting And Freezing Processes[M]. CRC Press, 1992.
    [33]CONDE R, PARRA M T, CASTRO F, et al. Numerical model for two-phase solidification problem in a pipe[J]. Applied Thermal Engineering,2004,24(17/18): 2501-2509.
    [34]LIU Z, MULDREW K, WAN R G, et al. Measurement of freezing point depression of water in glass capillaries and the associated ice front shape[J]. Physical Review E,2003,67(6): 061602.
    [35]LIU Z, MULDREW K, WAN R G, et al. Retardation of ice growth in glass capillaries: measurement of the critical capillary radius[J]. Physical Review E,2004,69(2): 021611.
    [36]JAIN A, MIGLANI A, HUANG Y, et al. Ice formation modes during flow freezing in a small cylindrical channel[J]. International Journal of Heat and Mass Transfer,2018,128: 836-848.
    [37]张驰, 张涛, 韩涛, 等. 管壁温度非恒定条件下单管冻结温度场解析计算[J]. 煤炭科学技术, 2012,40(3): 20-23, 82.(ZHANG Chi, ZHANG Tao, HAN Tao, et al. Analysis calculation on single pipeline freezing temperature field under non-constant condition of pipe wall temperature[J]. Coal Science and Technology, 2012,40(3): 20-23, 82.(in Chinese))
    [38]胡向东, 陈锦, 汪洋, 等. 环形单圈管冻结稳态温度场解析解[J]. 岩土力学, 2013,34(3): 874-880.(HU Xiangdong, CHEN Jin, WANG Yang, et al. Analytical solution to steady-state temperature field of single-circle-pipe freezing[J]. Rock and Soil Mechanics,2013,34(3): 874-880.(in Chinese))
    [39]MYERS T G, LOW J. An approximate mathematical model for solidification of a flowing liquid in a microchannel[J]. Microfluidics and Nanofluidics,2011,11(4): 417-428
    [40]LELEA D, NISHIO S, TAKANO K. The experimental research on microtube heat transfer and fluid flow of distilled water[J]. International Journal of Heat And Mass Transfer,2004,47(12/13): 2817-2830.
    [41]JAIN A. Characterization of flow freezing in small channels for ice valve applications[D]. PhD Thesis. West Lafayette: Purdue University, 2019.
    [42]尹超男, 沈财敏. PVC自来水管结冻物理特性的分析研究[J]. 水利科技与经济, 2016,22(12): 22-27.(YIN Chaonan, SHEN Caimin. Aanlysis on the frozen physical characteristics of PVC tap water pipe[J]. Water Conservancy Science and Technology and Economy,2016,22(12): 22-27.(in Chinese))
    [43]BRAGA S L, MILON J J. Visualization of dendritic ice growth in supercooled water inside cylindrical capsules[J]. International Journal of Heat and Mass Transfer,2012,55(13/14): 3694-3703.
    [44]AKYURT M, ZAKI G, HABEEBULLAH B. Freezing phenomena in ice-water systems[J]. Energy Conversion and Management,2002,43(14): 1773-1789.
    [45]申彪, 廖振强, 李洪强, 等. 厚壁圆筒热-结构耦合应力分析[J]. 弹箭与制导学报, 2019,39(3): 49-52.(SHEN Biao, LIAO Zhenqiang, LI Hongqiang, et al. Calculating for thermo-mechanical coupling stress in thick wall cylinders[J]. Journal of Projectiles, Rockets, Missiles and Guidance,2019,39(3): 49-52.(in Chinese))
    [46]中原一郎, 涩谷寿一, 土田荣一郎, 等. 弹性力学手册[M]. 关正西, 李跃明, 译. 西安: 西安交通大学出版社, 2014.(NAKAHARA Ichiro, SHIBUYA Juichi, TSUCHIDA Eiichiro. Handbook of Elasticity[M]. GUAN Zhengxi, LI Yueming, transl. Xi’an: Xi’an Jiaotong University Press, 2014.(Chinese version))
    [47]徐芝纶. 弹性力学[M]. 4版. 北京: 高等教育出版社, 2006.(XU Zhilun. Elasticity Mechanics[M]. 4th ed. Beijing: Higher Education Press, 2006.(in Chinese))
    [48]JAIN A, MIGLANI A, WEIBEL J A, et al. The effect of channel diameter on flow freezing in microchannels[J]. International Journal of Heat and Mass Transfer,2020,157(11): 119718.
    [49]高世桥, 刘海鹏. 毛细力学[M]. 北京: 科学出版社, 2010.(GAO Shiqiao, LIU Haipeng. Capillary Mechanics[M]. Beijing: Science Press, 2010.(in Chinese))
    [50]欧阳芳, 鲁世强, 方军, 等. 塑性应变对21-6-9高强不锈钢管瞬时弹性模量的影响[J]. 塑性工程学报, 2019,26(3): 209-217.(OUYANG Fang, LU Shiqiang, FANG Jun, et al. Effect of plastic strain on instantaneous elastic modulus of 21-6-9 high strength stainless steel tube[J]. Journal of Plasticity Engineering,2019,26(3): 209-217.(in Chinese))
    [51]施季华. 有机玻璃动力弹性模量的测定[J]. 苏州教育学院学报, 1996(1): 83-84.(SHI Jihua. Plexiglass-determination of dynamic elastic modulus[J]. Journal of Suzhou Institute of Education,1996(1): 83-84.(in Chinese))
    [52]马洪顺, 邢国平. 聚乙烯合成塑料管弹性模量等指标测定的试验研究[J]. 试验技术与试验机, 1989(6): 10-13.(MA Hongshun, XING Guoping. Experimental study on elastic modulus of polyethylene synthetic plastic tube[J]. Test Technology and Testing Machine, 1989(6): 10-13.(in Chinese))
    [53]JIANG H, SUN Y, ROGERS J A, et al. Post-buckling analysis for the precisely controlled buckling of thin film encapsulated by elastomeric substrates[J]. International Journal of Solids and Structures,2008,45(7/8): 2014-2023.
    [54]CAI S, CHEN D, SUO Z, et al. Creasing instability of elastomer films[J]. Soft Matter, 2012,8: 1301-1304.
    [55]姜宗来, 何光篪. 人冠状动脉的生物力学特性, Ⅲ: 静态弹性模量与血管结构[J]. 第三军医大学学报, 1989,11(4): 252-256.(JIANG Zonglai, HE Guangchi. Biomechanical properties of human coronary arteries, Ⅲ: static elastic modulus and vascular structure[J]. Journal of Third Military Medical University,1989,11(4): 252-256.(in Chinese))
    [56]MULLER A, WAPLER M C, WALLRABE U. A quick and accurate method to determine the Poisson's ratio and the coefficient of thermal expansion of PDMS[J]. Soft Matter,2018,15(4): 779-784.
    [57]DUGAS J, MICHEL P, MARTIN L, et al. Behavior of the refractive index and of the coefficient of thermal expansion of silicone with temperature[J]. Applied Optics,1986,25(21): 3807-3808.
    [58]郭耀, 李刚, 贾成艳, 等. 冰力学参数的超声波测试研究[J]. 极地研究, 2016,28(1): 152-157.(GUO Yao, LI Gang, JIA Chengyan, et al. Study of ultrasonic test in the measurements of mechanical properties of ice[J]. Chinese Journal of Polar Research,2016,28(1): 152-157.(in Chinese))
    [59]KAEWKULCHAI G. Dynamic progressive collapse of frame structures[D]. PhD Thesis. Austin: The University of Texas at Austin, 2003.
    [60]ZWALLY H J, GIOVINETTO M B, LI J, et al. Mass changes of the Greenland and Antarctic ice sheets and shelves and contributions to sea-level rise: 1992—2002[J]. Journal of Glaciology,2005,51(175): 509-527.
    [61]KELL G S, WHALLEY E. Reanalysis of the density of liquid water in the range 0~150 ℃ and 0~1 kbar[J]. Journal of Chemical Physics,1975,62(9): 3496-3503.
    [62]刘传安, 罗小凤. 用恒流量热器测定水的比热容[J]. 大学物理, 2006,25(4): 40-42.(LIU Chuan’an, LUO Xiaofeng. Determination of the specific heat capacity of water using a constant flow calorimeter[J]. College Physics,2006,25(4): 40-42.(in Chinese))
    [63]CHAUDHARY G, LI R. Freezing of water droplets on solid surfaces: an experimental and numerical study[J]. Experimental Thermal and Fluid Science,2014,57: 86-93.
    [64]GRUNDKE K, MICHEL S, KNISPEL G, et al. Wettability of silicone and polyether impression materials: characterization by surface tension and contact angle measurements[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2008,317(1/3): 598-609.
    [65]TAN J, FENG S, et al. Effect of counterions on micellization of pyrrolidinium based silicone ionic liquids in aqueous solutions[J]. Journal of Chemical and Engineering Data,2014,59(6): 1830-1834.
    [66]ADAMSON A W, SHIRLEY F P, KUNICHIKA K T. Contact angles on molecular solids,Ⅰ: ice[J]. Journal of Colloid and Interface Science,1970,34(3): 461-468.
    [67]EVERETT D H. Thermodynamics of frost damage to porous solids[J]. Transactions of the Faraday Society,1961,57(5): 1541-1551.
    [68]OSS C J V, GIESE R F, WENTZEK R, et al. Surface tension parameters of ice obtained from contact angle data and from positive and negative particle adhesion to advancing freezing fronts[J]. Journal of Adhesion Science and Technology,1992,6(4): 503-516.
  • 加载中
计量
  • 文章访问数:  671
  • HTML全文浏览量:  123
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-30
  • 修回日期:  2021-10-14

目录

    /

    返回文章
    返回