留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

粒子群优化与Kriging模型相结合的结构非概率可靠性分析

乔心州 陈永婧 刘鹏 方秀荣

乔心州,陈永婧,刘鹏,方秀荣. 粒子群优化与Kriging模型相结合的结构非概率可靠性分析 [J]. 应用数学和力学,2022,43(12):1412-1421 doi: 10.21656/1000-0887.420308
引用本文: 乔心州,陈永婧,刘鹏,方秀荣. 粒子群优化与Kriging模型相结合的结构非概率可靠性分析 [J]. 应用数学和力学,2022,43(12):1412-1421 doi: 10.21656/1000-0887.420308
QIAO Xinzhou, CHEN Yongjing, LIU Peng, FANG Xiurong. Non-Probabilistic Structural Reliability Analysis Integrating the PSO and the Kriging Model[J]. Applied Mathematics and Mechanics, 2022, 43(12): 1412-1421. doi: 10.21656/1000-0887.420308
Citation: QIAO Xinzhou, CHEN Yongjing, LIU Peng, FANG Xiurong. Non-Probabilistic Structural Reliability Analysis Integrating the PSO and the Kriging Model[J]. Applied Mathematics and Mechanics, 2022, 43(12): 1412-1421. doi: 10.21656/1000-0887.420308

粒子群优化与Kriging模型相结合的结构非概率可靠性分析

doi: 10.21656/1000-0887.420308
基金项目: 陕西省自然科学基础研究计划(2019JQ-796)
详细信息
    作者简介:

    乔心州(1974—),男,副教授,硕士生导师(通讯作者. E-mail:qiaoxinzhou@xust.edu.cn

  • 中图分类号: O213.2

Non-Probabilistic Structural Reliability Analysis Integrating the PSO and the Kriging Model

  • 摘要:

    针对复杂结构可靠性分析中面临的隐式功能函数和小样本问题,提出了一种粒子群优化和Kriging模型相结合的结构非概率可靠性分析方法。采用多维椭球描述结构不确定参数,运用粒子群优化对模型相关参数进行求解,并构建隐式功能函数的Kriging模型进行可靠性分析。三个算例结果表明所提方法有效可行,精度和效率均优于基于Kriging模型的非概率可靠性分析方法。

  • 图  1  线性变换与可靠性指标

    Figure  1.  The linear transform and the reliability index

    图  2  算法流程图

    Figure  2.  The flowchart for the proposed method

    图  3  相对误差对比图(算例1)

    Figure  3.  Comparison of relative errors (example 1)

    图  4  链轮

    Figure  4.  A chain wheel

    图  5  相对误差对比图(算例2)

    Figure  5.  Comparison of relative errors (example 2)

    图  6  25杆桁架

    Figure  6.  A 25-bar truss structure

    图  7  相对误差对比图(算例3)

    Figure  7.  Comparison of relative errors (example 3)

    表  1  相关系数为0.2的迭代过程

    Table  1.   The iterative process for a correlation coefficient of 0.2

    iteration stepdesign pointreliability index
    0(−2.4442, 4.2332)4.8882
    1(−1.8607, 4.1064)4.5083
    2(−1.8641, 4.1039)4.5074
    reference value(−1.8692, 4.1017)4.5075
    下载: 导出CSV

    表  2  不同相关系数的可靠性指标(算例1)

    Table  2.   Reliability indexes for different correlation coefficients (example 1)

    correlation coefficientPSO-KrigingiterationsCPU timeKrigingiterationsCPU timereference value
    04.170420.45703 s4.165351.00112 s4.1701
    0.24.507320.38524 s4.500261.20133 s4.5075
    0.55.213430.68554 s5.203951.01367 s5.2138
    0.75.923730.88563 s5.935571.40156 s5.9235
    0.97.033720.57889 s7.030261.16778 s7.0339
    下载: 导出CSV

    表  3  相关系数为0.9的迭代过程

    Table  3.   The iterative process for a correlation coefficient of 0.9

    iteration stepdesign pointreliability index
    0(0.0662, 0.0265, 0.0088, 0.00650.4059)0.4123
    1(−0.0031, −0.0004, 0.0146, 0.0141, 0.3458)0.3464
    2(−0.0040, −0.0005, 0.0124, 0.0176, 0.3415)0.3422
    3(−0.0044, −0.0007, 0.00132, 0.0179, 0.3441)0.3448
    4(−0.0042, −0.0007, 0.0134, 0.0181, 0.3439)0.3447
    reference value(−0.0058, −0.0015, 0.0146, 0.0155, 0.3437)0.3444
    下载: 导出CSV

    表  4  不同相关系数的可靠性指标(算例2)

    Table  4.   Reliability indexes for different correlation coefficients (example 2)

    correlation coefficientPSO-KrigingiterationsCPU timeKrigingiterationsCPU timereference value
    00.3469416.15572 s0.3406727.16953 s0.3465
    0.30.3504520.19465 s0.3466934.93226 s0.3509
    0.50.3517417.23898 s0.3612726.35562 s0.3513
    0.70.3487521.56773 s0.3454831.05089 s0.3490
    0.90.3447418.06577 s0.3404728.09947 s0.3444
    下载: 导出CSV

    表  5  MCS求解的95%置信区间(算例2)

    Table  5.   The 95% confidence intervals of MCS solutions (example 2)

    MCS valuemean valuedeviationlower boundupper bound
    0.34650.34690.00290.34630.3475
    0.35090.35060.00290.35000.3511
    0.35130.35110.00300.35050.3517
    0.34900.34910.00300.34850.3497
    0.34440.34480.00310.34420.3454
    下载: 导出CSV

    表  6  不确定变量的分布参数

    Table  6.   The distribution parameters of uncertain variables

    uncertain variablemean valueradius
    $ {A_1} $/mm270070
    $ {A_2} $/mm26200620
    $ {A_3} $/mm25300530
    $ {A_4} $/mm28800880
    $ L $/mm150001500
    下载: 导出CSV

    表  7  相关系数为0的迭代过程

    Table  7.   The iterative process for a correlation coefficient of 0

    iteration stepdesign pointreliability index
    0(−0.0083, −0.4266, −0.3646, −0.0519, 0.8256)0.9997
    1(−0.0109, −0.5652, −0.4831, −0.0587, 0.9338)1.1952
    2(−0.0100, −0.5201, −0.4446, −0.0540, 0.8593)1.0997
    3(−0.0089, −0.4827, −0.4126, −0.0478, 0.7875)1.0870
    4(−0.0084, −0.5107, −0.4222, −0.0509, 0.8504)1.0793
    5(−0.0105, −0.5065, −0.4289, −0.0465, 0.8372)1.0694
    6(−0.0094, 0.5032, −0.4301, −0.0431, 0.8356)1.0669
    reference value(−0.0092, −0.5043, −0.4280, −0.0484, 0.8340)1.0656
    下载: 导出CSV

    表  8  不同相关系数的可靠性指标(算例3)

    Table  8.   Reliability indexes for different correlation coefficients (example 3)

    correlation coefficientPSO-KrigingiterationsCPU timeKrigingiterationsCPU timereference value
    01.0669627.02193 s0.9944937.73403 s1.0656
    0.31.2683731.52558 s1.17931041.92578 s1.2679
    0.51.4906628.02193 s1.39971040.44356 s1.4917
    0.71.9043626.02193 s1.8253938.37882 s1.9023
    0.93.1439731.52558 s2.99341146.11937 s3.1431
    下载: 导出CSV

    表  9  MCS求解的95%置信区间(算例3)

    Table  9.   The 95% confidence intervals of MCS solutions (example 3)

    MCS valuemean valuedeviationlower boundupper bound
    1.06561.06590.00291.06531.0665
    1.26791.26720.00281.26671.2679
    1.49171.49190.00251.49141.4924
    1.90231.90230.00281.90171.9029
    3.14313.14300.00293.14243.1435
    下载: 导出CSV
  • [1] BEN-HAIM Y. A non-probabilistic concept of reliability[J]. Structural Safety, 1994, 14(4): 227-245. doi: 10.1016/0167-4730(94)90013-2
    [2] ELISHAKOFF I, BEN-HAIM Y. Discussion on: a non-probabilistic concept of reliability[J]. Structural Safety, 1995, 17(3): 195-199. doi: 10.1016/0167-4730(95)00010-2
    [3] 郭书祥, 吕震宙, 冯元生. 基于区间分析的结构非概率可靠性模型[J]. 计算力学学报, 2001, 18(1): 56-60

    GUO Shuxiang, LÜ Zhengzhou, FENG Yuansheng. A non-probabilistic model of structural reliability based on interval analysis[J]. Chinese Journal of Computational Mechanics, 2001, 18(1): 56-60.(in Chinese)
    [4] JIANG T, CHEN J J, XU Y L. A semi-analytic method for calculating non-probabilistic reliability index based on interval models[J]. Applied Mathematical Modelling, 2007, 31(7): 1362-1370. doi: 10.1016/j.apm.2006.02.013
    [5] 曹鸿钧, 段宝岩. 基于凸集合模型的非概率可靠性研究[J]. 计算力学学报, 2005, 22(5): 546-549, 578

    CAO Hongjun, DUAN Baoyan. An approach on the non-probabilistic reliability of structures based on uncertainty convex models[J]. Chinese Journal of Computational Mechanics, 2005, 22(5): 546-549, 578.(in Chinese)
    [6] JIANG C, LU G Y, HAN X, et al. Some important issues on first-order reliability analysis with non-probabilistic convex models[J]. ASME Journal of Mechanical Design, 2014, 136(3): 034501. doi: 10.1115/1.4026261
    [7] MENG Z, HU H, ZHOU H L. Super parametric convex model and its application for non-probabilistic reliability-based design optimization[J]. Applied Mathematical Modelling, 2018, 55: 354-370. doi: 10.1016/j.apm.2017.11.001
    [8] MENG Z, ZHANG Z, ZHOU H L. A novel experimental data-driven exponential convex model for reliability assessment with uncertain-but-bounded parameters[J]. Applied Mathematical Modelling, 2020, 77(1): 773-787.
    [9] WANG X, QIU Z P, ELISHAKOFF I. Non-probabilistic set-theoretic model for structural safety measure[J]. Acta Mechanica, 2008, 198: 51-64. doi: 10.1007/s00707-007-0518-9
    [10] JIANG C, BI R G, LU G Y, et al. Structural reliability analysis using non-probabilistic convex model[J]. Computer Methods in Applied Mechanics and Engineering, 2013, 254: 83-98. doi: 10.1016/j.cma.2012.10.020
    [11] 陈江义, 文尉超, 王迎佳. 基于响应面方法的结构非概率可靠性分析[J]. 郑州大学学报(工学版), 2015, 36(5): 121-124

    CHEN Jiangyi, WEN Weichao, WANG Yingjia. Analysis of structural non-probabilistic reliability based on response surface method[J]. Journal of Zhengzhou University (Engineering Science), 2015, 36(5): 121-124.(in Chinese)
    [12] BAI Y C, HAN X, JIANG C, et al. A response-surface-based structural reliability analysis method by using non-probability convex model[J]. Applied Mathematical Modelling, 2014, 38(15/16): 3834-3847.
    [13] 马超, 吕震宙. 隐式极限状态方程的非概率可靠性分析[J]. 机械强度, 2009, 31(1): 45-50 doi: 10.3321/j.issn:1001-9669.2009.01.010

    MA Chao, LÜ Zhengzhou. Non-probablistic reliability analysis method for implicit limit state function[J]. Journal of Mechanical Strength, 2009, 31(1): 45-50.(in Chinese) doi: 10.3321/j.issn:1001-9669.2009.01.010
    [14] 潘林锋, 周昌玉, 陈士诚. 基于Kriging模型的非概率可靠度计算[J]. 应用力学学报, 2010, 27(4): 791-794

    PAN Linfeng, ZHOU Changyu, CHEN Shicheng. Non-probability reliability calculation based on Kriging model[J]. Chinese Journal of Applied Mechanics, 2010, 27(4): 791-794.(in Chinese)
    [15] 郑严. 基于智能算法的结构可靠性分析及优化设计研究[D]. 博士学位论文. 成都: 西南交通大学, 2012.

    ZHEN Yan. Research on structural reliability analysis and optimization based on intelligence algorithm[D]. PhD Thesis. Chengdu: Southwest Jiaotong University, 2012.(in Chinese)
    [16] JIANG C, HAN X, LU G Y, et al. Correlation analysis of non-probabilistic convex model and corresponding structural reliability technique[J]. Computer Methods in Applied Mechanics & Engineering, 2011, 200(33/36): 2528-2546.
    [17] 屈力刚, 刘洪侠, 李铭, 等. 基于Sobol序列采样点分布策略的研究与应用[J]. 锻压装备与制造技术, 2019, 54(6): 101-105 doi: 10.16316/j.issn.1672-0121.2019.06.030

    QU Ligang, LIU Hongxia, LI Ming, et al. Research and application of sampling point distribution strategy based on Sobol sequence[J]. China Metalforming Equipment & Manufacturing Technology, 2019, 54(6): 101-105.(in Chinese) doi: 10.16316/j.issn.1672-0121.2019.06.030
  • 加载中
图(7) / 表(9)
计量
  • 文章访问数:  519
  • HTML全文浏览量:  247
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-11
  • 录用日期:  2022-03-10
  • 修回日期:  2021-12-08
  • 网络出版日期:  2022-11-03
  • 刊出日期:  2022-12-01

目录

    /

    返回文章
    返回