留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带参数时空分数阶Fokas-Lenells方程的精确解

刘杨秀 胡彦霞

刘杨秀,胡彦霞. 带参数时空分数阶Fokas-Lenells方程的精确解 [J]. 应用数学和力学,2022,43(11):1288-1302 doi: 10.21656/1000-0887.420322
引用本文: 刘杨秀,胡彦霞. 带参数时空分数阶Fokas-Lenells方程的精确解 [J]. 应用数学和力学,2022,43(11):1288-1302 doi: 10.21656/1000-0887.420322
LIU Yangxiu, HU Yanxia. Exact Solutions to Space-Time Fractional Fokas-Lenells Equations With Parameters[J]. Applied Mathematics and Mechanics, 2022, 43(11): 1288-1302. doi: 10.21656/1000-0887.420322
Citation: LIU Yangxiu, HU Yanxia. Exact Solutions to Space-Time Fractional Fokas-Lenells Equations With Parameters[J]. Applied Mathematics and Mechanics, 2022, 43(11): 1288-1302. doi: 10.21656/1000-0887.420322

带参数时空分数阶Fokas-Lenells方程的精确解

doi: 10.21656/1000-0887.420322
详细信息
    作者简介:

    刘杨秀(1997—),女,硕士(E-mail:158428598@qq.com

    胡彦霞(1972—),女,副教授,博士,硕士生导师(通讯作者. E-mail:yxiahu@163.com

  • 中图分类号: O175

Exact Solutions to Space-Time Fractional Fokas-Lenells Equations With Parameters

  • 摘要:

    利用多项式完全判别系统法求得非线性光学中带参数时空分数阶Fokas-Lenells方程在一般情况下的精确解,包括有理函数解、周期解、孤波解、Jacobi椭圆函数解和双曲函数解等,绘制了精确解的相关图像,并由此分析了参数对解的结构的影响。

  • 图  1  ${\left| {{\varOmega _1}(x,t)} \right|^2}$取不同分数阶导数值时的三维图,图1(b)对应的等高线图,以及$ t = 3 $${\left| {{\varOmega _1}(x,t)} \right|^2}$关于$ x $的截面图:(a) $\alpha=1/2, \beta=1/3,{\left| {{\varOmega _1}(x,t)} \right|^2}$的三维图; (b) $\alpha=1/3, \beta=1/3,{\left| {{\varOmega _1}(x,t)} \right|^2} $的三维图; (c) 图1(b)的等高线图; (d) 当$ t = 3 $${\left| {{\varOmega _1}(x,t)} \right|^2}$关于$ x $的截面图

    注 为了解释图中的颜色,读者可以参考本文的电子网页版本,后同。

    Figure  1.  The 3D graph of ${\left| {{\varOmega _1}(x,t)} \right|^2}$ with different values of the fractional derivative, the contour plot of fig.1(b) and the sectional view of ${\left| {{\varOmega _1}(x,t)} \right|^2}$ against $ x $ with $ t = 3 $: (a) the graphic model of $\left| {{\varOmega _1}(x,t)} \right|^2, \alpha=1/2, \beta=1/3$; (b) the graphic model of $\left| {{\varOmega _1}(x,t)} \right|^2, \alpha=1/3, \beta=1/3$; (c) the contour plot of fig.1(b); (d) the sectional view of ${\left| {{\varOmega _1}(x,t)} \right|^2}$ against $ x $ when t=3

    图  2  ${\left| {{\varOmega _2}(x,t)} \right|^2}$取不同分数阶导数值时的三维图,图2(b)对应的等高线图,以及$ t = 3 $${\left| {{\varOmega _2}(x,t)} \right|^2}$关于$ x $的截面图:(a) $\alpha=1/2, \beta=1/3,{\left| {{\varOmega _2}(x,t)} \right|^2}$的三维图; (b) $\alpha=1/3, \beta=1/3,{\left| {{\varOmega _2}(x,t)} \right|^2} $的三维图; (c) 图2(b)的等高线图; (d) 当$ t = 3 $${\left| {{\varOmega _2}(x,t)} \right|^2}$关于$ x $的截面图

    Figure  2.  The 3D graph of ${\left| {{\varOmega _2}(x,t)} \right|^2}$ with different values of the fractional derivative, the contour plot of fig.2(b) and the sectional view of ${\left| {{\varOmega _2}(x,t)} \right|^2}$ against $ x $ with $ t = 3 $: (a) the graphic model of ${\left| {{\varOmega _2}(x,t)} \right|^2}, \alpha=1/2, \beta=1/3$; (b) the graphic model of ${\left| {{\varOmega _2}(x,t)} \right|^2} , \alpha=1/3, \beta=1/3$; (c) the contour plot of fig.2(b); (d) the sectional view of ${\left| {{\varOmega _2}(x,t)} \right|^2}$ against $ x $ when t=3

    图  3  ${\left| {{\varOmega _3}(x,t)} \right|^2}$取不同分数阶导数值时的三维图,图3(b)对应的等高线图,以及$ t = 3 $${\left| {{\varOmega _3}(x,t)} \right|^2}$关于$ x $的截面图:(a) $\alpha=1/2, \beta=1/3, {\left| {{\varOmega _3}(x,t)} \right|^2}$的三维图; (b) $\alpha=1/3, \beta=1/3,{\left| {{\varOmega _3}(x,t)} \right|^2} $的三维图; (c) 图3(b)的等高线图; (d) 当$ t = 3 $${\left| {{\varOmega _3}(x,t)} \right|^2}$关于$ x $的截面图

    Figure  3.  The 3D graph of ${\left| {{\varOmega _3}(x,t)} \right|^2}$ with different values of the fractional derivative, the contour map of fig. 3(b) and the sectional view of ${\left| {{\varOmega _3}(x,t)} \right|^2}$ against $ x $ with $ t = 3 $: (a) the graphic model of ${\left| {{\varOmega _3}(x,t)} \right|^2},\alpha=1/2, \beta=1/3$; (b) the graphic model of ${\left| {{\varOmega _3}(x,t)} \right|^2},\alpha=1/3, \beta=1/3$; (c) the contour plot of fig. 3(b); (d) the sectional view of ${\left| {{\varOmega _3}(x,t)} \right|^2}$ against $ x $ when t=3

    图  4  ${\left| {{\varOmega _4}(x,t)} \right|^2}$取不同分数阶导数值时的三维图,图4(b)对应的等高线图,以及$ t = 3 $${\left| {{\varOmega _4}(x,t)} \right|^2}$关于$ x $的截面图:(a) $\alpha=1/2, \beta=1/3,{\left| {{\varOmega _4}(x,t)} \right|^2}$的三维图; (b) $\alpha=1/3, \beta=1/3,{\left| {{\varOmega _4}(x,t)} \right|^2} $的三维图; (c) 图4(b)的等高线图; (d) 当$ t = 3 $${\left| {{\varOmega _4}(x,t)} \right|^2}$关于$ x $的截面图

    Figure  4.  The 3D graph of ${\left| {{{{\varOmega }}_4}(x,t)} \right|^2}$ with different values of the fractional derivative, the contour plot of fig.4(b) and the sectional view of ${\left| {{\varOmega _4}(x,t)} \right|^2}$ against $ x $ with $ t = 3 $: (a) the graphic model of ${\left| {{\varOmega _4}(x,t)} \right|^2}, \alpha=1/2, \beta=1/3$; (b) the graphic model of ${\left| {{\varOmega _4}(x,t)} \right|^2} , \alpha=1/3, \beta=1/3$; (c) the contour plot of fig.4(b); (d) the sectional view of ${\left| {{\varOmega _4}(x,t)} \right|^2}$ against $ x $ when t=3

    图  5  ${\left| {{\varOmega _5}(x,t)} \right|^2}$取不同分数阶导数值时的三维图,图5(b)对应的等高线图,以及$ t = 3 $${\left| {{\varOmega _5}(x,t)} \right|^2}$关于$ x $的截面图:(a) $\alpha=1/2, \beta=1/3,{\left| {{\varOmega _5}(x,t)} \right|^2}$的三维图; (b) $\alpha=1/3, \beta=1/3,{\left| {{\varOmega _5}(x,t)} \right|^2} $的三维图; (c) 图5(b)的等高线图; (d) 当$ t = 3 $${\left| {{\varOmega _5}(x,t)} \right|^2}$关于$ x $的截面图

    Figure  5.  The 3D graph of ${\left| {{\varOmega _5}(x,t)} \right|^2}$ with different values of the fractional derivative, the contour plot of fig. 5(b) and the sectional view of ${\left| {{{{\varOmega }}_5}(x,t)} \right|^2}$ against $ x $ with $ t = 3 $: (a) the graphic model of ${\left| {{\varOmega _5}(x,t)} \right|^2} ,\alpha=1/2, \beta=1/3$; (b) the graphic model of ${\left| {{\varOmega _5}(x,t)} \right|^2},\alpha=1/3, \beta=1/3$; (c) the contour plot of fig. 5(b); (d) the sectional view of ${\left| {{{{\varOmega }}_5}(x,t)} \right|^2}$ against $ x $ when t=3

    图  6  ${\left| {{\varOmega _6}(x,t)} \right|^2}$取不同分数阶导数值时的三维图,图6(b)对应的等高线图,以及$ t = 3 $${\left| {{\varOmega _6}(x,t)} \right|^2}$关于$ x $的截面图:(a) $\alpha=1/2, \beta=1/3,{\left| {{\varOmega _6}(x,t)} \right|^2}$的三维图; (b) $\alpha=1/3, \beta=1/3,{\left| {{\varOmega _6}(x,t)} \right|^2} $的三维图; (c) 图6(b)的等高线图;(d) 当$ t = 3 $${\left| {{\varOmega _6}(x,t)} \right|^2}$关于$ x $的截面图

    Figure  6.  The 3D graph of ${\left| {{\varOmega _6}(x,t)} \right|^2}$ with different values of the fractional derivative, the contour plot of fig. 6(b) and the sectional view of ${\left| {{\varOmega _6}(x,t)} \right|^2}$ against $ x $ with $ t = 3 $: (a) the graphic model of ${\left| {{\varOmega _6}(x,t)} \right|^2},\alpha=1/2, \beta=1/3$; (b) the graphic model of ${\left| {{\varOmega _6}(x,t)} \right|^2} ,\alpha=1/3, \beta=1/3$; (c) the contour plot of fig. 6(b); (d) the sectional view of ${\left| {{\varOmega _6}(x,t)} \right|^2}$ against $ x $ when t=3

    图  7  ${\left| {{\varOmega _7}(x,t)} \right|^2}$取不同分数阶导数值时的三维图,图7(b)对应的等高线图,以及$ t = 3 $${\left| {{\varOmega _7}(x,t)} \right|^2}$关于$ x $的截面图:(a) $\alpha=1/2, \beta=1/3, {\left| {{\varOmega _7}(x,t)} \right|^2}$的三维图; (b) $\alpha=1/3, \beta=1/3,{\left| {{\varOmega _7}(x,t)} \right|^2} $的三维图; (c) 图7(b)的等高线图; (d) 当$ t = 3 $${\left| {{\varOmega _7}(x,t)} \right|^2}$关于$ x $的截面图

    Figure  7.  The 3D graph of ${\left| {{\varOmega _7}(x,t)} \right|^2}$ with different values of the fractional derivative, the contour plot of fig.7(b) and the sectional view of ${\left| {{\varOmega _7}(x,t)} \right|^2}$ against $ x $ with $ t = 3 $: (a) the graphic model of ${\left| {{\varOmega _7}(x,t)} \right|^2}, \alpha=1/2, \beta=1/3$; (b) the graphic model of ${\left| {{\varOmega _7}(x,t)} \right|^2}, \alpha=1/3, \beta=1/3$; (c) the contour plot of fig.7(b); (d) the sectional view of ${\left| {{\varOmega _7}(x,t)} \right|^2}$ against $ x $ when t=3

    图  8  ${\left| {{\varOmega _8}(x,t)} \right|^2}$取不同分数阶导数值时的三维图,图8(b)对应的等高线图,以及$ t = 3 $${\left| {{\varOmega _8}(x,t)} \right|^2}$关于$ x $的截面图:(a) $\alpha=1/2, \beta=1/3,{\left| {{{{\varOmega }}_8}(x,t)} \right|^2}$的三维图; (b) $\alpha=1/3, \beta=1/3,{\left| {{{{\varOmega }}_8}(x,t)} \right|^2} $的三维图; (c) 图8(b)的等高线图; (d) 当$ t = 3 $$\alpha=1/2, \beta=1/3, {\left| {{\varOmega _8}(x,t)} \right|^2}$关于$ x $的截面图

    Figure  8.  The 3D graph of ${\left| {{\varOmega _8}(x,t)} \right|^2}$ with different values of the fractional derivative, the contour plot of fig. 8(b) and the sectional view of ${\left| {{\varOmega _8}(x,t)} \right|^2}$ against $ x $ with $ t = 3 $: (a) the graphic model of ${\left| {{\varOmega _8}(x,t)} \right|^2},\alpha=1/2, \beta=1/3$; (b) the graphic model of ${\left| {{{{\varOmega }}_8}(x,t)} \right|^2} ,\alpha=1/3, \beta=1/3$; (c) the contour plot of fig. 8(b); (d) the sectional view of ${\left| {{\varOmega _8}(x,t)} \right|^2}$ against $ x $ when t=3

    图  9  ${\left| {{\varOmega _9}(x,t)} \right|^2}$取不同分数阶导数值时的三维图,图9(b)对应的等高线图,以及$ t = 3 $${\left| {{\varOmega _9}(x,t)} \right|^2}$关于$ x $的截面图:(a) $\alpha=1/2, \beta=1/3,{\left| {{\varOmega _9}(x,t)} \right|^2}$的三维图; (b) $\alpha=1/3, \beta=1/3,{\left| {{\varOmega _9}(x,t)} \right|^2} $的三维图; (c) 图9(b)的等高线图; (d) 当$ t = 3 $${\left| {{\varOmega _9}(x,t)} \right|^2}$关于$ x $的截面图

    Figure  9.  The 3D graph of ${\left| {{\varOmega _9}(x,t)} \right|^2}$ with different values of the fractional derivative, the contour plot of fig.9(b) and the sectional view of ${\left| {{\varOmega _9}(x,t)} \right|^2}$ against $ x $ with $ t = 3 $: (a) the graphic model of ${\left| {{\varOmega _9}(x,t)} \right|^2}, \alpha=1/2, \beta=1/3$; (b) the graphic model of ${\left| {{\varOmega _9}(x,t)} \right|^2}, \alpha=1/3, \beta=1/3$; (c) the contour plot of fig.9(b); (d) the sectional view of ${\left| {{\varOmega _9}(x,t)} \right|^2}$ against $ x $ when t=3

  • [1] WANG B H, WANG Y Y, DAI C Q, et al. Dynamical characteristic of analytical fractional solitons for the space-time fractional Fokas-Lenells equation[J]. Alexandria Engineering Journal, 2020, 59(6): 4699-4707. doi: 10.1016/j.aej.2020.08.027
    [2] KILBAS A, SRIVASTAVA H M, TRUJILLO J J. Theory and Applications of Fractional Differential Equations[M]. Amsterdam: Elsevier Science, 2006.
    [3] MILLER K S, ROSS B. An Introduction to the Fractional Calculus and Fractional Differential Equations[M]. Wiley-Interscience, 1993.
    [4] ATANGANA A. Derivative With a New Parameter Theory, Methods and Applications[M]. Amsterdam: Elsevier Science, 2015.
    [5] PANDIR Y, EKIN A. Dynamics of combined soliton solutions of unstable nonlinear Schrödinger equation with new version of the trial equation method[J]. Chinese Journal of Physics, 2020, 67: 534-543. doi: 10.1016/j.cjph.2020.08.013
    [6] LIU XIAOYAN, ZHOU Q, BISWAS A, et al. The similarities and differences of different plane solitons controlled by (3 + 1)-dimensional coupled variable coefficient system[J]. Journal of Advanced Research, 2020, 24: 167-173. doi: 10.1016/j.jare.2020.04.003
    [7] SAJID N, AKRAM G. Optical solitons with full nonlinearity for the conformable space-time fractional Fokas-Lenells equation[J]. Optik, 2019, 196: 163131. doi: 10.1016/j.ijleo.2019.163131
    [8] HASHEMI M S, BALEANU D. Lie Symmetry Analysis of Fractional Differential Equations[M]. New York: Chapman and Hall/CRC , 2020.
    [9] 胡彦鑫, 郭增鑫, 辛祥鹏. 一类Burgers-KdV方程的李群分析、李代数、对称约化及精确解[J]. 聊城大学学报(自然科学版), 2021, 34(2): 8-13

    HU Yanxin, GUO Zengxin, XIN Xiangpeng. Lie group analysis, Lie algebra, symmetric reduction and exact solutions of a class of nonlinear evolution equations[J]. Journal of Liaocheng University (Natural Science), 2021, 34(2): 8-13.(in Chinese)
    [10] KALBANI K, AL-GHAFRI K S, KRISHNAN E V, et al. Pure-cubic optical solitons by Jacobi’s elliptic function approach[J]. Optik, 2021, 243: 167404. doi: 10.1016/j.ijleo.2021.167404
    [11] BISWAS A, EKICI M, SONMEZOGLU A, et al. Highly dispersive optical solitons with non-local nonlinearity by extended Jacobi’s elliptic function expansion[J]. Optik, 2019, 184: 277-286. doi: 10.1016/j.ijleo.2019.03.061
    [12] MANAFIAN J, AGHDAEI M F, JEDDI R S, et al. Application of the generalized G'/G-expansion method for nonlinear PDEs to obtaining soliton wave solution[J]. Optik, 2017, 135: 395-406. doi: 10.1016/j.ijleo.2017.01.078
    [13] KALLEL W, ALMUSAWA H, MIRHOSSEINI-ALIZAMINI S M, et al. Optical soliton solutions for the coupled conformable Fokas-Lenells equation with spatio-temporal dispersion[J]. Results in Physics, 2021, 26: 104388. doi: 10.1016/j.rinp.2021.104388
    [14] 胡艳, 孙峪怀. 应用多项式完全判别系统方法求解时空分数阶复Ginzburg-Landau方程[J]. 应用数学和力学, 2021, 42(8): 874-880

    HU Yan, SUN Yuhuai. Solutions to space-time fractional complex Ginzburg-Landau equations with the complete discrimination system for polynomial method[J]. Applied Mathematics and Mechanics, 2021, 42(8): 874-880.(in Chinese)
    [15] CAO Q, DAI C. Symmetric and anti-symmetric solitons of the fractional second-and third-order nonlinear Schrödinger equation[J]. Chinese Physics Letters, 2021, 38(9): 090501. doi: 10.1088/0256-307X/38/9/090501
    [16] DAI C Q, WANG Y Y, ZHANG J F. Managements of scalar and vector rogue waves in a partially nonlocal nonlinear medium with linear and harmonic potentials[J]. Nonlinear Dynamics, 2020, 102: 179-391.
    [17] FEI J, CAO W. Explicit soliton-cnoidal wave interaction solutions for the (2 + 1)-dimensional negative-order breaking soliton equation[J]. Waves in Random and Complex Media, 2020, 30(1): 54-64. doi: 10.1080/17455030.2018.1479548
    [18] HAN H, LI H, DAI C. Wick-type stochastic multi-soliton and soliton molecule solutions in the framework of nonlinear Schrödinger equation[J]. Applied Mathematics Letters, 2021, 120: 107302. doi: 10.1016/j.aml.2021.107302
    [19] ARSHED S, RAZA N. Optical solitons perturbation of Fokas-Lenells equation with full nonlinearity and dual dispersion[J]. Chinese Journal of Physics, 2020, 63: 314-324. doi: 10.1016/j.cjph.2019.12.004
    [20] YOUNIS M, SEADAWY A R, BABER M Z, et al. Analytical optical soliton solutions of the Schrödinger-Poisson dynamical system[J]. Results in Physics, 2021, 27: 104369. doi: 10.1016/j.rinp.2021.104369
    [21] FANG Y, WU G Z, WANG Y Y, et al. Data-driven femtosecond optical soliton excitations and parameters discovery of the high-order NLSE using the PINN[J]. Nonlinear Dynamics, 2021, 105: 603-616. doi: 10.1007/s11071-021-06550-9
    [22] RAGHURAMAN P J, BAGHYA SHREE S, MANI RAJAN M S. Soliton control with inhomogeneous dispersion under the influence of tunable external harmonic potential[J]. Waves in Random and Complex Media, 2021, 31(3): 474-485. doi: 10.1080/17455030.2019.1598602
    [23] DAI C Q, WANG Y Y. Coupled spatial periodic waves and solitons in the photovoltaic photorefractive crystals[J]. Nonlinear Dynamics, 2020, 102: 1733-1741. doi: 10.1007/s11071-020-05985-w
    [24] AIN Q T, HE J H, N ANJUM, et al. The fractional complex transform: a novel approach to the time-fractional Schrödinger equation[J]. Fractals, 2021, 28(7): 2150002.
    [25] SHEHATA M, REZAZADEH H, ZAHRAN E, et al. New optical soliton solutions of the perturbed Fokas-Lenells equation[J]. Communications in Theoretical Physics, 2019, 71(11): 13-18.
    [26] TRIKI H, WAZWAZ A M. Combined optical solitary waves of the Fokas-Lenells equation[J]. Waves in Random and Complex Media, 2017, 27(4): 587-593. doi: 10.1080/17455030.2017.1285449
    [27] ALI KHALID K, OSMAN M S, ABDEL-ATY M. New optical solitary wave solutions of Fokas-Lenells equation in optical fiber via Sine-Gordon expansion method[J]. Alexandria Engineering Journal, 2020, 59(3): 1191-1196. doi: 10.1016/j.aej.2020.01.037
    [28] BULUT H, ABDULKADIR SULAIMAN T, MEHMET BASKONUS H, et al. Optical solitons and other solutions to the conformable space-time fractional Fokas-Lenells equation[J]. Optik, 2018, 172: 20-27. doi: 10.1016/j.ijleo.2018.06.108
    [29] TRIKI H, ZHOU Q, LIU W, et al. Localized pulses in optical fibers governed by perturbed Fokas-Lenells equation[J]. Physics Letters A, 2022, 421: 127782. doi: 10.1016/j.physleta.2021.127782
    [30] BISWAS A, YILDIRM Y, YASAR E, et al. Optical soliton solutions to Fokas-Lenells equation using some different methods[J]. Optik, 2018, 173: 21-31. doi: 10.1016/j.ijleo.2018.07.098
    [31] BISWAS A, EKICI M, SONMEZOGLU A, et al. Optical solitons with differential group delay for coupled Fokas-Lenells equation by extended trial function scheme[J]. Optik, 2018, 165: 102-110. doi: 10.1016/j.ijleo.2018.03.102
    [32] ZHANG Y, YANG J W, CHOW K W, et al. Solitons, breathers and rogue waves for the coupled Fokas-Lenells system via Darboux transformation[J]. Nonlinear Analysis: Real World Applications, 2017, 33: 237-252. doi: 10.1016/j.nonrwa.2016.06.006
    [33] ZHANG Q, ZHANG Y, YE R. Exact solutions of nonlocal Fokas-Lenells equation[J]. Applied Mathematics Letters, 2019, 98: 336-343. doi: 10.1016/j.aml.2019.05.015
    [34] YAKUP Y, BISWAS A, DAKOVA A, et al. Cubic-quartic optical soliton perturbation with Fokas-Lenells equation by sine-Gordon equation approach[J]. Results in Physics, 2021, 26: 104409. doi: 10.1016/j.rinp.2021.104409
    [35] DIEU DONNE G, TIOFACK C G L, SEADAWY A, et al. Propagation of W-shaped, M-shaped and other exotic optical solitons in the perturbed Fokas-Lenells equation[J]. The European Physical Journal Plus, 2020, 135: 371. doi: 10.1140/epjp/s13360-020-00382-z
    [36] NADIA M, GHAZALA A. Exact solitary wave solutions of the (1 + 1)-dimensional Fokas-Lenells equation[J]. Optik, 2020, 208: 164459. doi: 10.1016/j.ijleo.2020.164459
    [37] 杨翠红, 朱思铭, 梁肇军. 多项式代数方程根的完全分类及其应用[J]. 中山大学学报(自然科学版), 2003, 42(1): 5-8 doi: 10.3321/j.issn:0529-6579.2003.01.002

    YANG Cuihong, ZHU Siming, LIANG Zhaojun. Complete discrimination of the roots of polynomials and its applications[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni (Natural Science), 2003, 42(1): 5-8.(in Chinese) doi: 10.3321/j.issn:0529-6579.2003.01.002
    [38] 夏壁灿, 杨路. 多项式判别矩阵的若干性质及其应用[J]. 应用数学学报, 2003, 4: 652-663 doi: 10.3321/j.issn:0254-3079.2003.04.009

    XIA Bican, YANG Lu. Some properties of the discrimination matrix of polynomials with applications[J]. Acta Mathematicae Applicatae Sinica, 2003, 4: 652-663.(in Chinese) doi: 10.3321/j.issn:0254-3079.2003.04.009
    [39] 杨路, 张景中, 侯晓荣. 非线性代数方程组与定理机器证明[M]. 上海: 上海科技教育出版社, 1996.

    YANG Lu, ZHANG Jingzhong, HOU Xiaorong. Machine Proof of Systems of Nonlinear Algebraic Equations and Theorems[M]. Shanghai: Shanghai Science and Technology Education Press, 1996. (in Chinese)
    [40] LIU C. Applications of complete discrimination system for polynomial for classifications of traveling wave solutions to nonlinear differential equations[J]. Computer Physics Communications, 2009, 181(2): 317-324.
    [41] 辛华. 带有微扰项的Fokas-Lenells方程的包络行波模式[J]. 数学的实践与认识, 2021, 51(11): 324-328

    XIN Hua. The patterns of envelope traveling waves of Fokas-Lenells equation with perturbation term[J]. Mathematics in Practice and Theory, 2021, 51(11): 324-328.(in Chinese)
    [42] KHALIL R, HORANI A, YOUSEF A, et al. A new definition of fractional derivative[J]. Journal of Computational and Applied Mathematics, 2014, 264: 65-70. doi: 10.1016/j.cam.2014.01.002
    [43] LIU C. Counterexamples on Jumarie’s two basic fractional calculus formulae[J]. Communications in Nonlinear Science and Numerical Simulation, 2015, 22(1/3): 92-94. doi: 10.1016/j.cnsns.2014.07.022
    [44] LIU C. Counterexamples on Jumarie’s three basic fractional calculus formulae for non-differentiable continuous functions[J]. Chaos, Solitons and Fractals, 2018, 109: 219-222. doi: 10.1016/j.chaos.2018.02.036
    [45] TARASOV V E. No nonlocality, no fractional derivative[J]. Communications in Nonlinear Science and Numerical Simulation, 2018, 62: 157-163. doi: 10.1016/j.cnsns.2018.02.019
    [46] TARASOV V E. No violation of the Leibniz rule, no fractional derivative[J]. Communications in Nonlinear Science and Numerical Simulation, 2013, 18(11): 2945-2948. doi: 10.1016/j.cnsns.2013.04.001
    [47] WANG B H, WANG Y Y. Fractional white noise functional soliton solutions of a wick-type stochastic fractional NLSE[J]. Applied Mathematics Letters, 2020, 110: 106583. doi: 10.1016/j.aml.2020.106583
    [48] YU L J, WU G Z, WANG Y Y, et al. Traveling wave solutions constructed by Mittag-Leffler function of a (2 + 1)-dimensional space-time fractional NLS equation[J]. Results in Physics, 2020, 17: 103156. doi: 10.1016/j.rinp.2020.103156
    [49] WANG B H, LU P H, DAI C Q, et al. Vector optical soliton and periodic solutions of a coupled fractional nonlinear Schrödinger equation[J]. Results in Physics, 2020, 17: 103036. doi: 10.1016/j.rinp.2020.103036
    [50] DAI C Q, WU G, LI H J, et al. Wick-type stochastic fractional solitons supported by quadratic-cubic nonlinearity[J]. Fractals, 2021, 29(7): 2150192. doi: 10.1142/S0218348X21501929
  • 加载中
图(9)
计量
  • 文章访问数:  370
  • HTML全文浏览量:  146
  • PDF下载量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-28
  • 修回日期:  2021-11-30
  • 网络出版日期:  2022-09-27
  • 刊出日期:  2022-11-30

目录

    /

    返回文章
    返回