留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于变分模态分解的结构裂纹识别

杨启航 李林安 李利青 米少瑄

杨启航,李林安,李利青,米少瑄. 基于变分模态分解的结构裂纹识别 [J]. 应用数学和力学,2022,43(12):1324-1335 doi: 10.21656/1000-0887.420338
引用本文: 杨启航,李林安,李利青,米少瑄. 基于变分模态分解的结构裂纹识别 [J]. 应用数学和力学,2022,43(12):1324-1335 doi: 10.21656/1000-0887.420338
YANG Qihang, LI Lin’an, LI Liqing, MI Shaoxuan. Structural Crack Identification Based on the Variational Mode Decomposition[J]. Applied Mathematics and Mechanics, 2022, 43(12): 1324-1335. doi: 10.21656/1000-0887.420338
Citation: YANG Qihang, LI Lin’an, LI Liqing, MI Shaoxuan. Structural Crack Identification Based on the Variational Mode Decomposition[J]. Applied Mathematics and Mechanics, 2022, 43(12): 1324-1335. doi: 10.21656/1000-0887.420338

基于变分模态分解的结构裂纹识别

doi: 10.21656/1000-0887.420338
基金项目: 国家自然科学基金(11572218)
详细信息
    作者简介:

    杨启航(1996—),男,硕士生(E-mail:18838010785@163.com

    李林安(1966—),男,教授,硕士,博士生导师(通讯作者. E-mail:lali@tju.edu.cn

  • 中图分类号: U447

Structural Crack Identification Based on the Variational Mode Decomposition

  • 摘要:

    为完善桥梁损伤检测方法,进一步提高桥梁损伤识别的精度,以动载作用下带裂纹简支梁模型为研究对象,提出了一种不基于完整有限元模型的裂纹检测方法。该方法在不阻塞交通的前提下,仅需对简支梁跨中加速度响应进行分析处理,减少了实际工程中传感器的装卸及维护工作。同时,基于该模型推导出了简支裂纹梁跨中加速度解析式。在理论推导的支撑下,利用变分模态分解和Hilbert变换构造出了瞬时能量和均值能量差,这两个裂纹识别指标能够有效地识别出裂纹深度占比为5%的小裂纹。基于此,开展了不同轮载大小、环境噪声以及损伤程度对检测结果影响的研究。结果表明:① 瞬时频率对裂纹位置具有较好的识别效果;② 均值能量差对不同裂纹深度占比以及轮载大小具有一定的敏感度;③ 该方法具有较强的噪声鲁棒性。

  • 图  1  移动荷载下的裂纹梁模型

    Figure  1.  A cracked beam model under a moving load

    图  2  积分常数

    Figure  2.  Integration constants

    图  3  跨中位移

    Figure  3.  The midspan displacement

    图  4  跨中加速度

    Figure  4.  The midspan acceleration

    图  5  车轮荷载:(a) 集中荷载;(b) 非均布荷载

    Figure  5.  The wheel load: (a) a concentrated load; (b) an ununiform load

    图  6  VMD

    Figure  6.  The VMD

    图  7  IMF 4瞬时频率

    Figure  7.  The IMF 4 instantaneous frequency

    图  8  IMF 5瞬时能量

    Figure  8.  The IMF 5 instantaneous energy

    图  9  $ \delta $为2$ 0\text{%} $,15$ \text{%} $$ 10\text{%} $,5$ \text{%} $的瞬时频率对比

    Figure  9.  Comparison of instantaneous frequencies for $\delta $ = 20%, 15%, 10%, 5%

    图  10  $ \delta $$ 20\text{%} $,15$ \text{%} $$ 10\text{%} $,5$ \text{%} $的瞬时能量对比

    Figure  10.  Comparison of instantaneous energy for $\delta $ = 20%, 15%, 10%, 5%

    图  11  均值能量差

    注 为了解释图中的颜色,读者可以参考本文的电子网页版本,后同。

    Figure  11.  The mean energy difference

    图  12  三种轮载大小作用下瞬时能量对比

    Figure  12.  Comparison of instantaneous energies under 3 wheel loads

    图  13  均值能量差(轮载大小)

    Figure  13.  The mean energy difference (wheel load size)

    图  14  $ \delta $为2$ 0\text{%} $,15$ \text{%} $$ 10\text{%} $,5$ \text{%} $的瞬时频率对比(双位置)

    Figure  14.  Comparison of instantaneous frequencies for $\delta $ = 20%, 15%, 10%, 5% (2 positions)

    图  15  $ \delta $$ 20\text{%} $,15$ \text{%} $$ 10\text{%} $,5$ \text{%} $的瞬时能量对比(双位置)

    Figure  15.  Comparison of instantaneous energy for $\delta $ = 20%, 15%, 10%, 5% (2 positions)

    图  16  均值能量差(双位置)

    Figure  16.  Mean energy differences (2 positions)

    图  17  信噪比为$ 5\;{\rm{dB}} $

    Figure  17.  The SNR is $ 5\;{\rm{dB}} $

    图  18  信噪比为$ 10\;{\rm{dB}} $

    Figure  18.  The SNR is $ 10\;{\rm{dB}} $

    图  19  信噪比为$ 15\;{\rm{dB}} $

    Figure  19.  The SNR is $ 15\;{\rm{dB}} $

    表  1  模拟工况

    Table  1.   The simulation condition

    conditionelastic modulus
    Et /($ {\rm{N}}/{{\rm{m}}}^{3} $)
    density
    $ \rho $/($ {\rm{kg}}/{{\rm{m}}}^{3} $)
    Poisson’s ratio $ \mu $moving load
    velocity $ V/({\rm{km/h}} )$
    wheel load
    P $/{\rm{kN} }$
    crack location
    $ {L}_{1} $/m
    crack depth
    ratio $ \delta $ = d/H
    1$ 4.54\times {10}^{10} $$ 2\;549 $$ 0.2 $$ 6 $$ 10 $$ 9 $0.15
    下载: 导出CSV
  • [1] ZHU J, ZHANG Y. Damage detection in bridge structures under moving vehicle loads using delay vector variance method[J]. Journal of Performance of Constructed Facilities, 2019, 33(5): 4019049.
    [2] ZHU X Q, LAW S S. Wavelet-based crack identification of bridge beam from operational deflection time history[J]. International Journal of Solids and Structures, 2006, 43(7): 2299-2317.
    [3] 刘光耀, 刘习军, 张素侠, 等. 基于小波分析和变异系数的简支梁桥损伤识别[J]. 应用力学学报, 2020, 37(5): 1915-1922

    LIU Guangyao, LIU Xijun, ZHANG Suxia, et al. Damage identification of simply supported beam bridge based on wavelet analysis and variation coefficient[J]. Chinese Journal of Applied Mechanics, 2020, 37(5): 1915-1922.(in Chinese)
    [4] KHORRAM A, BAKHTIARI-NEJAD F, REZAEIAN M. Comparison studies between two wavelet based crack detection methods of a beam subjected to a moving load[J]. International Journal of Engineering Science, 2012, 51: 204-215. doi: 10.1016/j.ijengsci.2011.10.001
    [5] 刘小靖, 周又和, 王记增. 小波方法及其力学应用研究进展[J]. 应用数学和力学, 2022, 43(1): 1-13 doi: 10.1007/s10483-021-2795-5

    LIU Xiaojing, ZHOU Youhe, WANG Jizeng. Research progresses of wavelet methods and their applications in mechanics[J]. Applied Mathematics and Mechanics, 2022, 43(1): 1-13.(in Chinese) doi: 10.1007/s10483-021-2795-5
    [6] HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903-995. doi: 10.1098/rspa.1998.0193
    [7] MEREDITH J, GONZÁLEZ A, HESTER D. Empirical mode decomposition of the acceleration response of a prismatic beam subject to a moving load to identify multiple damage locations[J]. Shock and Vibration, 2012, 19(5): 845-856. doi: 10.1155/2012/804590
    [8] ROVERI N, CARCATERRA A. Damage detection in structures under traveling loads by Hilbert-Huang transform[J]. Mechanical Systems and Signal Processing, 2012, 28: 128-144. doi: 10.1016/j.ymssp.2011.06.018
    [9] 孟宗, 季艳, 谷伟明, 等. 基于支持向量机和窗函数的DEMD端点效应抑制方法[J]. 计量学报, 2016, 37(2): 180-184

    MENG Zong, JI Yan, GU Weiming, at el. End effects restraining of DEMD based on support vector machine and window function[J]. Acta Metrologica Sinica, 2016, 37(2): 180-184.(in Chinese)
    [10] 邢昀, 荣剑. 常见不同模态信号分解方法探讨[J]. 现代计算机, 2018, 36: 7-11

    XING Yun, RONG Jian. Discussion on the signal decomposition methods of common modes[J]. Modern Computer, 2018, 36: 7-11.(in Chinese)
    [11] DRAGOMIRETSKIY K, ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531-544. doi: 10.1109/TSP.2013.2288675
    [12] 赵岩, 朱均超, 张宝峰, 等. 基于VMD与Hilbert谱的旋转机械碰摩故障诊断方法[J]. 振动、测试与诊断, 2018, 38(2): 381-386 doi: 10.16450/j.cnki.issn.1004-6801.2018.02.026

    ZHAO Yan, ZHU Junchao, ZHANG Baofeng, et al. Rub-impact fault diagnosis of rotating machinery based on VMD and Hilbert spectrum[J]. Journal of Vibration, Measurement & Diagnosis, 2018, 38(2): 381-386.(in Chinese) doi: 10.16450/j.cnki.issn.1004-6801.2018.02.026
    [13] 唐贵基, 王晓龙. 参数优化变分模态分解方法在滚动轴承早期故障诊断中的应用[J]. 西安交通大学学报, 2015, 49(5): 73-81 doi: 10.7652/xjtuxb201505012

    TANG Guiji, WANG Xiaolong. Parameter optimized variational mode decomposition method with application to incipient fault diagnosis of rolling bearing[J]. Journal of Xi’an Jiaotong University, 2015, 49(5): 73-81.(in Chinese) doi: 10.7652/xjtuxb201505012
    [14] 赵昕海, 张术臣, 李志深, 等. 基于VMD的故障特征信号提取方法[J]. 振动、测试与诊断, 2018, 38(1): 11-19

    ZHAO Xinhai, ZHANG Shuchen, LI Zhishen, et al. Application of new denoising method based on VMD in fault feature extraction[J]. Journal of Vibration, Measurement & Diagnosis, 2018, 38(1): 11-19.(in Chinese)
    [15] BAGHERI A, ALIPOUR M, OZBULUT O E, et al. Identification of flexural rigidity in bridges with limited structural information[J]. Journal of Structural Engineering, 2018, 144(8): 4018126. doi: 10.1061/(ASCE)ST.1943-541X.0002131
    [16] 王超, 毛羚. 基于VMD和广义Morse小波的结构瞬时频率识别[J]. 振动、测试与诊断, 2020, 40(5): 957-962

    WANG Chao, MAO Ling. Instantaneous frequency identification of a structure using variational mode decomposition and generalized Morse wavelets[J]. Journal of Vibration, Measurement & Diagnosis, 2020, 40(5): 957-962.(in Chinese)
    [17] MOUSAVI M, HOLLOWAY D, OLIVIER J C, et al. Beam damage detection using synchronisation of peaks in instantaneous frequency and amplitude of vibration data[J]. Measurement, 2021, 168: 1-14.
    [18] CHONDROS T G, DIMAROGONAS A D, YAO J. A continuous cracked beam vibration theory[J]. Journal of Sound and Vibration, 1998, 215(1): 17-34. doi: 10.1006/jsvi.1998.1640
    [19] 王扬. 复杂轮胎力作用下沥青路面力学行为研究[D]. 博士学位论文. 北京: 北京交通大学, 2017.

    WANG Yang. Study on mechanical behaviors of asphalt pavement under complicated tire force[D]. PhD Thesis. Beijing: Beijing Jiaotong University, 2017. (in Chinese)
  • 加载中
图(19) / 表(1)
计量
  • 文章访问数:  513
  • HTML全文浏览量:  217
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-08
  • 录用日期:  2022-04-01
  • 修回日期:  2022-03-04
  • 网络出版日期:  2022-11-15
  • 刊出日期:  2022-12-01

目录

    /

    返回文章
    返回