留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高超声速流动与换热数值仿真研究

王强 徐涛 姚永涛

王强,徐涛,姚永涛. 高超声速流动与换热数值仿真研究 [J]. 应用数学和力学,2022,43(10):1105-1112 doi: 10.21656/1000-0887.420346
引用本文: 王强,徐涛,姚永涛. 高超声速流动与换热数值仿真研究 [J]. 应用数学和力学,2022,43(10):1105-1112 doi: 10.21656/1000-0887.420346
WANG Qiang, XU Tao, YAO Yongtao. Numerical Study on Hypersonic Flow and Aerodynamic Heating[J]. Applied Mathematics and Mechanics, 2022, 43(10): 1105-1112. doi: 10.21656/1000-0887.420346
Citation: WANG Qiang, XU Tao, YAO Yongtao. Numerical Study on Hypersonic Flow and Aerodynamic Heating[J]. Applied Mathematics and Mechanics, 2022, 43(10): 1105-1112. doi: 10.21656/1000-0887.420346

高超声速流动与换热数值仿真研究

doi: 10.21656/1000-0887.420346
详细信息
    作者简介:

    王强(1982—),男,副教授,博士,硕士生导师(通讯作者.  E-mail:qwang@nuc.edu.cn

  • 中图分类号: V411

Numerical Study on Hypersonic Flow and Aerodynamic Heating

  • 摘要:

    基于有限差分法开发了高超声速流动与换热问题气热耦合仿真求解器,运用该求解器对三种典型高超声速流动与换热问题开展了仿真研究,得到了相应的气动参数、热流密度分布。高超声速后台阶的存在使表面气动参数、热流分布不再连续;随着缝深的提高,缝隙局部流速迅速降低,对流换热效应减弱;高超声速无限长圆管绕流中,边界层外部区域气动参数随时间变化不大,边界层内存在较大的温度梯度,壁面温度随时间升高。三个算例的仿真结果均与试验测量值进行了对比,验证了所开发的求解器的计算能力。

  • 图  1  后台阶算例模型尺寸

    Figure  1.  Geometry of the back-step model

    图  2  高超声速后台阶流动计算网格

    Figure  2.  The computational mesh for hypersonic flow over backward facing step

    图  3  计算得到的密度等值线图

    注 为了解释图中的颜色,读者可以参考本文的电子网页版本,后同。

    Figure  3.  Predicted density contours

    图  4  壁面压力分布

    Figure  4.  Distribution of the wall pressure

    图  5  壁面热流分布

    Figure  5.  Distribution of the wall heat flux

    图  6  缝隙几何参数(单位:mm)

    Figure  6.  The gap geometry (unit: mm)

    图  7  缝隙流动网格拓扑结构示意图

    Figure  7.  The mesh topology for the hypersonic gap flow

    图  8  缝隙内流线

    Figure  8.  Streamlines in the gap

    图  9  缝隙中线流向速度沿缝深变化

    Figure  9.  The velocity distribution along the gap central line

    图  10  缝隙后壁面热流分布

    Figure  10.  The heat flux on the rear surface of the gap

    图  11  无限长圆管高超声速绕流计算网格

    Figure  11.  Computational grids for the unsteady coupled heat transfer simulation of hypersonic flow over infinite-length pipe

    图  12  对称线上温度分布

    Figure  12.  The temperature distribution along the centerline of the cylinder

    图  13  t=0 s时刻,流固交界面压力分布

    Figure  13.  The pressure on the fluid-solid interface at t=0 s

    图  14  t=0 s时刻,流固交界面热流密度分布

    Figure  14.  The heat flux density on the fluid-solid interface at t=0 s

  • [1] 蔡国彪, 徐大军. 高超声速飞行器技术[M]. 北京: 科学出版社, 2012: 32.

    CAI Guobiao, XU Dajun. Hypersonic Vehicle Technology[M]. Beijing: Science Press, 2012: 32. (in Chinese)
    [2] 邱波, 国义军, 张昊元, 等. 来流参数对防热瓦横缝旋涡结构及热环境的影响[J]. 航空学报, 2016, 37(3): 761-770

    QIU Bo, GUO Yijun, ZHANG Haoyuan, et al. Free stream parameters’ effects on vortexes and aerodynamic heating environment in thermal protection tile transverse gaps[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3): 761-770.(in Chinese)
    [3] HINDERKS M, RADESPIEL R. Investigation of hypersonic gap flow of a reentry nosecap with consideration of fluid structure interacion[C]//Proceedings of AIAA Aerospace Sciences Meeting & Exhibit. Reno, Nevada: AIAA, 2006.
    [4] 沈淳, 夏新林, 曹占伟, 等. 缝隙-腔体密封结构在高速气流冲击下的整体流动、传热特性分析[J]. 航空学报, 2012, 33(1): 34-43

    SHEN Chun, XIA Xinlin, CAO Zhanwei, et al. Analysis of flow and heat characteristics of seal structure with gap and cavity under the impact of high speed airflow[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(1): 34-43.(in Chinese)
    [5] 殷超, 张军, 梁天, 等. 高超飞行器舵缝隙气动热环境数值模拟研究[C]//中国力学大会. 杭州: 中国力学学会, 2019.

    YIN Chao, ZHANG Jun, LIANG Tian, et al. Numerical simulation study on aerodynamic thermal environment of hypersonic aircraft rudder gap[C]//Proceedings of Chinese Congress of Theoretical and Applied Mechanics. Hangzhou: The Chinese Society of Theoretical and Applied Mechanics, 2019. (in Chinese)
    [6] 聂涛, 刘伟强. 高超声速飞行器前缘流固耦合计算方法研究[J]. 物理学报, 2012, 61(18): 184401 doi: 10.7498/aps.61.184401

    NIE Tao, LIU Weiqiang. Study of coupled fluid and solid for a hypersonic leading edge[J]. Acta Physica Sinica, 2012, 61(18): 184401.(in Chinese) doi: 10.7498/aps.61.184401
    [7] 李邦明, 鲍麟, 童秉纲. 高超声速飞行器前驻点热流数值模拟的物理准则研究[J]. 应用数学和力学, 2010, 31(7): 801-811

    LI Bangming, BAO Lin, TONG Binggang. Physical criterion study on forward stagnation point heat flux CFD computations at hypersonic speeds[J]. Applied Mathematics and Mechanics, 2010, 31(7): 801-811.(in Chinese)
    [8] 张昊元, 宗文刚, 桂业伟. 高超声速飞行器前缘缝隙流动数值模拟研究[J]. 宇航学报, 2014, 35(8): 893-900 doi: 10.3873/j.issn.1000-1328.2014.08.005

    ZHANG Haoyuan, ZONG Wengang, GUI Yewei. Numerical investigation of flow in leading-edge gap of hypersonic vehicle[J]. Journal of Astronautics, 2014, 35(8): 893-900.(in Chinese) doi: 10.3873/j.issn.1000-1328.2014.08.005
    [9] LIOU M S. A sequel to AUSM, part Ⅱ: AUSM + -up for all speeds[J]. Journal of Computational Physics, 2006, 214(1): 137-170. doi: 10.1016/j.jcp.2005.09.020
    [10] COAKLEY T J. Turbulence modeling methods for the compressible Navier-Stokes equations[C]//Proceedings of 16th Fluid and Plasma Dynamics Conference. Danvers, Massachusetts: AIAA, 1983.
    [11] 王强, 姜澎. 一种全速域的计算方法及其应用[J]. 应用数学和力学, 2016, 37(6): 567-573 doi: 10.3879/j.issn.1000-0887.2016.06.002

    WANG Qiang, JIANG Peng. A modified numerical method for arbitrary Mach number flows based on the preconditioning technique[J]. Applied Machematics and Mechanics, 2016, 37(6): 567-573.(in Chinese) doi: 10.3879/j.issn.1000-0887.2016.06.002
    [12] JAMESON A, YOON S. Lower-upper implicit schemes with multiple grids for the Euler equation[J]. AIAA Journal, 1987, 25(7): 929-935. doi: 10.2514/3.9724
    [13] 李荣华, 冯果忱. 微分方程数值解法[M]. 北京: 高等教育出版社, 1995: 330-332.

    LI Ronghua, FENG Guoshen. Differential Equation Numerical Resolution[M]. Beijing: Higher Education Press, 1995: 330-332. (in Chinese)
    [14] ANTONY J. Time dependent calculations using multigrid with application to unsteady flows past airfoils and wings[C]//Proceedings of 10th Computational Fluid Dynamics Conference. Honolulu, HI: AIAA, 1991.
    [15] GROTOWSKY I M G, BALLMANN J. Numerical investigation of hypersonic step-flows[J]. Shock Waves, 2000, 10: 57-72. doi: 10.1007/s001930050179
    [16] JESSON C, VETTER M, GRÖNIG H. Experimental studies in the Aachen hypersonic shock tunnel[J]. Zeitschrift für Flugwissenschaften und Weltraumforschung, 1993, 17(2): 73-81.
    [17] ALLAN R W. Experimental investigation of heat transfer distributions in deep cavities in hypersonic separated flow: NASA-TN-5908[R]. Washington DC: NASA, 1970.
    [18] 邱波, 张昊元, 国义军, 等. 高超声速飞行器表面横缝旋涡结构及气动热环境数值模拟[J]. 航空学报, 2015, 36(11): 3515-3521

    QIU Bo, ZHANG Haoyuan, GUO Yijun, et al. Numerical investigation for vortexes and aerodynamic heating environment on transverse gap on hypersonic vehicle surface[J]. Acta Aeronautica et Astronautica Sinca, 2015, 36(11): 3515-3521.(in Chinese)
    [19] DECHAUMPHAI P, THORNTON E A, WIETING A R. Flow-thermal-structural study of aerodynamically heated leading edges: AIAA paper88-2245[R]. 1988.
    [20] 李佳伟, 王江峰, 杨天鹏, 等. 高超声速飞行器前缘热-流-固一体化计算[J]. 国防科技大学学报, 2018, 40(6): 9-16 doi: 10.11887/j.cn.201806002

    LI Jiawei, WANG Jiangfeng, YANG Tianpeng, et al. Fluid-thermal-structural study of integrated algorithm for aerodynamically hypersonic heated leading edges[J]. Journal of National University of Defense Technology, 2018, 40(6): 9-16.(in Chinese) doi: 10.11887/j.cn.201806002
    [21] WIETING A R, HOLDEN M S. Experimental study of shock wave interference heating on cylindrical leading edge at Mach 6 and 8[C]// AIAA, 22nd Thermophysics Conference. 1987.
  • 加载中
图(14)
计量
  • 文章访问数:  580
  • HTML全文浏览量:  212
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-15
  • 录用日期:  2022-05-11
  • 修回日期:  2022-04-13
  • 网络出版日期:  2022-09-23
  • 刊出日期:  2022-10-31

目录

    /

    返回文章
    返回