留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有随机扰动和不确定性的中立型耦合神经网络有限时间同步

王柯杰 陈巧玉 童东兵 毛琦

王柯杰, 陈巧玉, 童东兵, 毛琦. 具有随机扰动和不确定性的中立型耦合神经网络有限时间同步[J]. 应用数学和力学, 2023, 44(4): 480-488. doi: 10.21656/1000-0887.420411
引用本文: 王柯杰, 陈巧玉, 童东兵, 毛琦. 具有随机扰动和不确定性的中立型耦合神经网络有限时间同步[J]. 应用数学和力学, 2023, 44(4): 480-488. doi: 10.21656/1000-0887.420411
WANG Kejie, CHEN Qiaoyu, TONG Dongbing, MAO Qi. Finite-Time Synchronization of Coupled Neutral-Type Neural Networks With Stochastic Disturbances and Uncertainties[J]. Applied Mathematics and Mechanics, 2023, 44(4): 480-488. doi: 10.21656/1000-0887.420411
Citation: WANG Kejie, CHEN Qiaoyu, TONG Dongbing, MAO Qi. Finite-Time Synchronization of Coupled Neutral-Type Neural Networks With Stochastic Disturbances and Uncertainties[J]. Applied Mathematics and Mechanics, 2023, 44(4): 480-488. doi: 10.21656/1000-0887.420411

具有随机扰动和不确定性的中立型耦合神经网络有限时间同步

doi: 10.21656/1000-0887.420411
基金项目: 

上海市自然科学基金项目 20ZR1422400

详细信息
    作者简介:

    王柯杰(1996—), 男, 硕士生(E-mail:wangkejie0307@163.com)

    童东兵(1979—), 男, 教授, 博士(E-mail:tongdongbing@163.com)

    毛琦(1985—), 男, 讲师, 博士(E-mail:asdenglish@126.com)

    通讯作者:

    陈巧玉(1984—), 女, 副教授, 博士(通讯作者. E-mail:goodluckqiaoyu@126.com)

  • 中图分类号: O357.41

Finite-Time Synchronization of Coupled Neutral-Type Neural Networks With Stochastic Disturbances and Uncertainties

  • 摘要: 研究了具有时滞、不确定性和随机扰动的中立型耦合神经网络的有限时间同步问题.在Lyapunov稳定性理论的基础上,结合不等式技术得到了有限时间同步判据.接着构造合适的状态反馈控制器,使主从系统实现了有限时间同步.最后,通过一个数值仿真验证了所提出理论的有效性.
  • 图  1  系统耦合结构图

    Figure  1.  The coupling structure diagram for the error system

    图  2  随机噪声

    Figure  2.  Random noises

    图  3  无控制器作用下的误差系统状态轨迹

    Figure  3.  State trajectories of the error system

    图  4  控制器(5)作用下的误差系统状态轨迹

    Figure  4.  State trajectories of the error system with controller (5)

    图  5  控制输入

      为了解释图中的颜色,读者可以参考本文的电子网页版本.

    Figure  5.  Control inputs

  • [1] YANG X S, CHENG Z S, LI X D, et al. Exponential synchronization of coupled neutral-type neural networks with mixed delays via quantized output control[J]. Journal of the Franklin Institute, 2019, 356(15): 8138-8153. doi: 10.1016/j.jfranklin.2019.07.006
    [2] ZHOU W, ZHU Q, SHI P, et al. Adaptive synchronization for neutral-type neural networks with stochastic perturbation and Markovian switching parameters[J]. IEEE Transactions on Cybernetics, 2014, 44(12): 2848-2860. doi: 10.1109/TCYB.2014.2317236
    [3] ARIK S. New criteria for stability of neutral-type neural networks with multiple time delays[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 31(5): 1504-1513.
    [4] 赵玮, 任凤丽. 基于自适应控制的四元数时滞神经网络的有限时间同步[J]. 应用数学和力学, 2022, 43(1): 94-103. doi: 10.21656/1000-0887.420068

    ZHAO Wei, REN Fengli. Finite time adaptive synchronization of quaternion-value neural networks with time delays[J]. Applied Mathematics and Mechanics, 2022, 43(1): 94-103. (in Chinese) doi: 10.21656/1000-0887.420068
    [5] YANG X S, LU J Q. Finite-time synchronization of coupled networks with Markovian topology and impulsive effects[J]. IEEE Transactions on Automatic Control, 2015, 61(8): 2256-2261.
    [6] ZHENG F M. Finite-time synchronization for a coupled fuzzy neutral-type rayleigh system[J]. Neural Processing Letters, 2021, 53(4): 2967-2984. doi: 10.1007/s11063-021-10532-8
    [7] WANG J L, QIN Z, WU H N, et al. Finite-time synchronization and H synchronization of multiweighted complex networks with adaptive state couplings[J]. IEEE Transactions on Cybernetics, 2018, 50(2): 600-612.
    [8] ZHANG W L, YANG X S, XU C F, et al. Finite-time synchronization of discontinuous neural networks with delays and mismatched parameters[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 29(8): 3761-3771.
    [9] GOYAL J K, KAMAL S, PETEL R B, et al. Higher order sliding mode control-based finite-time constrained stabilization[J]. IEEE Transactions on Circuits and Systems : Express Briefs, 2019, 67(2): 295-299.
    [10] HE S P, SONG J, LIU F. Robust finite-time bounded controller design of time-delay conic nonlinear systems using sliding-mode control strategy[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 48(11): 1863-1873.
    [11] DU F, LU J G. New criteria on finite-time stability of fractional-order hopfield neural networks with time delays[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 32(9): 3858-3866.
    [12] CHEN W H, ZHENG W X. A new method for complete stability analysis of cellular neural networks with time delay[J]. IEEE Transactions on Neural Networks, 2010, 21(7): 1126-1139. doi: 10.1109/TNN.2010.2048925
    [13] 魏宇恒, 童东兵, 陈巧玉. 基于中间观测器的非线性系统的故障估计[J]. 应用数学和力学, 2021, 42(11): 1213-1220. doi: 10.21656/1000-0887.410335

    WEI Yuheng, TONG Dongbing, CHEN Qiaoyu. Fault estimation for nonlinear systems based on intermediate estimators[J]. Applied Mathematics and Mechanics, 2021, 42(11): 1213-1220. (in Chinese) doi: 10.21656/1000-0887.410335
    [14] WEI R Y, CAO J D, KURTHS J. Fixed-time output synchronization of coupled reaction-diffusion neural networks with delayed output couplings[J]. IEEE Transactions on Network Science and Engineering, 2021, 8(1): 780-789. doi: 10.1109/TNSE.2021.3052255
    [15] LIU X Y, HO D W, SONG Q, et al. Finite/fixed-time pinning synchronization of complex networks with stochastic disturbances[J]. IEEE Transactions on Cybernetics, 2018, 49(6): 2398-2403.
    [16] GONG S Q, GUO Z Y, WEN S P, et al. Finite-time and fixed-time synchronization of coupled memristive neural networks with time delay[J]. IEEE Transactions on Cybernetics, 2019, 51(6): 2944-2955.
    [17] ZHANG Y J, GU D W, XU S Y. Global exponential adaptive synchronization of complex dynamical networks with neutral-type neural network nodes and stochastic disturbances[J]. IEEE Transactions on Circuits and Systems : Regular Papers, 2013, 60(10): 2709-2718. doi: 10.1109/TCSI.2013.2249151
    [18] SHI Y C, CAO J D. Finite-time synchronization of memristive Cohen-Grossberg neural networks with time delays[J]. Neurocomputing, 2020, 377: 159-167.
  • 加载中
图(5)
计量
  • 文章访问数:  401
  • HTML全文浏览量:  148
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-30
  • 修回日期:  2022-03-21
  • 刊出日期:  2023-04-01

目录

    /

    返回文章
    返回