The Mathematical Model and Research Progress of the Boundary Layer Flashback in Premixed Combustion
-
摘要:
回火是影响燃气轮机等动力设备正常运行的关键性问题,边界层回火作为引发回火的主要机理之一,对燃气轮机燃烧室等燃烧装置的设计与运行有着重要影响。自1945年Lewis等提出关于边界层回火的临界梯度模型以来,针对边界层回火,相继发展了Peclet数模型、Damköhler数模型和火焰角度理论等理论模型,但上述理论模型各有不足之处,直到目前,边界层回火的理论模型仍处于持续的发展与完善之中。该文回顾了边界层回火的提出及研究历史,以理论模型建立时间的先后为序,阐释了各理论模型的建立背景、针对性和不足之处,并综述了近年来边界层回火理论模型的发展现状和研究进展,特别是应用数值模拟和统计分析等新方法开展边界层回火研究所取得的进展,进而提出了当前及未来燃烧边界层回火的理论研究方向和突破点。
Abstract:Flashback is a key problem influencing the normal operation of power equipment such as gas turbines. As one of the main mechanisms that cause flashback, the boundary layer flashback has an important effect on the design and operation of gas turbine combustors and other combustion devices. Since the critical gradient model for the boundary layer flashback was put forward by Lewis et al. in 1945, the theoretical models for the boundary layer flashback, such as the Peclet number model, the Damköhler number model and the flame angle theory, were developed one after another. However, these theoretical models still need improvements. Until now, the theoretical models for the boundary layer flashback are still in continuous development and modification. The history of the boundary layer flashback was reviewed, and the background, pertinence and shortcomings of the theoretical models were elucidated in the order of the model establishment time. In addition, the development status and research progress of the theoretical models for the boundary layer flashback in recent years were summarized, especially the progress made with new methods such as numerical simulation and statistical analysis. Further, the theoretical research direction and breakthrough points of the combustion boundary layer flashback at present and in the future were put forward.
-
-
[1] 侯晓春, 季鹤鸣, 刘庆国. 高性能航空燃气轮机燃烧技术[M]. 北京: 国防工业出版社, 2002.HOU Xiaochun, JI Heming, LIU Qingguo. Combustion Technology for High Performance Aviation Gas Turbine[M]. Beijing: National Defend Industry Press, 2002. (in Chinese) [2] 张文普, 李宇斌. 燃气轮机燃烧回火机理与数值模拟的研究进展[J]. 燃烧科学与技术, 2016, 22(5): 385-401ZHANG Wenpu, LI Yubin. Progress in mechanisms and numerical simulation of flame flashback for gas turbine[J]. Journal of Combustion Science and Technology, 2016, 22(5): 385-401.(in Chinese) [3] PLEE S L, MELLOR A M. Review of flashback reported in prevaporizing/premixing combustors[J]. Combustion and Flame, 1978, 32: 193-203. doi: 10.1016/0010-2180(78)90093-7 [4] THIBAUT D, CANDEL S. Numerical study of unsteady turbulent premixed combustion: application to flashback simulation[J]. Combustion and Flame, 1998, 113(1/2): 53-65. doi: 10.1016/S0010-2180(97)00196-X [5] FRITZ J, KRÖNER M, SATTELMAYER T. Flashback in a swirl burner with cylindrical premixing zone[J]. Journal of Engineering for Gas Turbines and Power, 2004, 126(2): 276-283. doi: 10.1115/1.1473155 [6] BILLANT P, CHOMAZ J M, HUERRE P. Experimental study of vortex breakdown in swirling jets[J]. Journal of Fluid Mechanics, 1998, 376: 183-219. doi: 10.1017/S0022112098002870 [7] LEIBOVICH S. The structure of vortex breakdown[J]. Annual Review of Fluid Mechanics, 1978, 10: 221-246. doi: 10.1146/annurev.fl.10.010178.001253 [8] LEWIS B, VON ELBE G. Stability and structure of burner flames[J]. The Journal of Chemical Physics, 1943, 11(2): 75-97. doi: 10.1063/1.1723808 [9] PUTNAM A A, JENSEN R A. Application of dimensionless numbers to flashback and other combustion phenomena[J]. Symposium on Combustion and Flame, and Explosion Phenomena, 1949, 3(1): 89-98. [10] LIN Y C, DANIELE S, JANSOHN P, et al. Turbulent flame speed as an indicator for flashback propensity of hydrogen-rich fuel gases[J]. Journal of Engineering for Gas Turbines and Power, 2013, 135(11): 111503-111510. doi: 10.1115/1.4025068 [11] EICHLER C, SATTELMAYER T. Premixed flame flashback in wall boundary layers studied by long-distance micro-PIV[J]. Experiments in Fluids, 2012, 52(2): 347-360. doi: 10.1007/s00348-011-1226-8 [12] GRUBER A, CHEN J H, VALIEV D, et al. Direct numerical simulation of premixed flame boundary layer flashback in turbulent channel flow[J]. Journal of Fluid Mechanics, 2012, 709: 516-542. doi: 10.1017/jfm.2012.345 [13] 李宇斌. 层流边界层回火的数值研究[D]. 硕士学位论文. 杭州: 浙江大学, 2016.LI Yubin. Numerical study on flashback in laminar boundary layers[D]. Master Thesis. Hangzhou: Zhejiang University, 2016. (in Chinese) [14] KURDYUMOV V N, FERNANDEZ E, LINAN A. Flame flashback and propagation of premixed flames near a wall[J]. Proceedings of Combustion Institute, 2000, 28(2): 1883-1889. doi: 10.1016/S0082-0784(00)80592-5 [15] KURDYUMOV V, FERNANDEZ-TARRAZO E, TRUFFAUT J M, et al. Experimental and numerical study of premixed flame flashback[J]. Proceedings of the Combustion Institute, 2007, 31(1): 1275-1282. doi: 10.1016/j.proci.2006.07.100 [16] KALANTARI A, SULLIVAN-LEWIS E, MCDONELL V. Flashback propensity of turbulent hydrogen-air jet flames at gas turbine premixer conditions[J]. Journal of Engineering for Gas Turbines and Power, 2016, 138(6): 061506. doi: 10.1115/1.4031761 [17] DUAN Z, KALANTARI A, MCDONELL V. Parametric analysis of flashback propensity with various fuel compositions and burner materials[C]//Proceedings of ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. Montréal, Canada, 2015: GT2015-43629. [18] DANIELE S, JANSOHN P, BOULOUCHOS K. Flashback propensity of syngas flames at high pressure: diagnostic and control[C]//Proceedings of ASME Turbo Expo 2010: Power for Land, Sea and Air. Glasgow, UK, 2010: GT2010-23456. [19] KALANTARI A, SULLIVAN-LEWIS E, MCDONELL V. Application of a turbulent jet flame flashback propensity model to a commercial gas turbine combustor[J]. Journal of Engineering for Gas Turbines and Power, 2017, 139(4): 041506. doi: 10.1115/1.4034649 [20] KALANTARI A, MCDONELL V, SAMUELSEN S, et al. Towards improved boundary layer flashback resistance of a 65 kW gas turbine with a retrofittable injector concept[C]//Proceeding of ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. Oslo, Norway, 2018: GT2018-75834. [21] KALANTARI A, AUWAIJAN N, MCDONELL V. Boundary layer flashback prediction for turbulent premixed jet flames: comparison of two models[C]//Proceedings of ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. Phoenix, Arizona, USA, 2019: GT2019-90507. [22] HOFERICHTER V, HIRSCH C, SATTELMAYER T. Analytic prediction of unconfined boundary layer flashback limits in premixed hydrogen-air flames[J]. Combustion Theory and Modelling, 2017, 21(3): 382-418. doi: 10.1080/13647830.2016.1240832 [23] BAUMGARTNER G, BOECK L R, SATTELMAYER T. Experimental investigation of the transition mechanism from stable flame to flashback in a generic premixed combustion system with high-speed micro-particle image velocimetry and micro-PLIF combined with chemiluminescence imaging[J]. Journal of Engineering for Gas Turbines and Power, 2016, 138(2): 021501. doi: 10.1115/1.4031227 [24] BAUMGARTNER G. Flame flashback in premixed hydrogen-air combustion systems[D]. PhD Thesis. München: Technische Universität München, 2014. [25] HOFERICHTER V, HIRSCH C, SATTELMAYER T, et al. Comparison of two methods to predict boundary layer flashback limits of turbulent hydrogen-air jet flames[J]. Flow Turbulence and Combustion, 2018, 100(3): 849-873. doi: 10.1007/s10494-017-9882-2 [26] HOFERICHTER V, HIRSCH C, SATTELMAYER T. Prediction of confined flame flashback limits using boundary layer separation theory[J]. Journal of Engineering for Gas Turbines and Power, 2017, 139(2): 021505. doi: 10.1115/1.4034237 [27] EICHLER C, BAUMGARTNER G, SATTELMAYER T. Experimental investigation of turbulent boundary layer flashback limits for premixed hydrogen-air flames confined in ducts[J]. Journal of Engineering for Gas Turbines and Power, 2012, 134(1): 011502. doi: 10.1115/1.4004149 [28] STRATFORD B S. The prediction of separation of the turbulent boundary layer[J]. Journal of Fluid Mechanics, 1959, 5(1): 1-16. doi: 10.1017/S0022112059000015 [29] EICHLER C T. Flame flashback in wall boundary layers of premixed combustion systems[D]. PhD Thesis. München: Technische Universität München, 2011. [30] KALANTARI A, MCDONELL V. Boundary layer flashback of non-swirling premixed flames: mechanisms, fundamental research, and recent advances[J]. Progress in Energy and Combustion Science, 2017, 61: 249-292. doi: 10.1016/j.pecs.2017.03.001 [31] VON ELBE G, MENTSER M. Further studies of the structure and stability of burner flames[J]. The Journal of Chemical Physics, 1945, 13(2): 89-100. doi: 10.1063/1.1724004 [32] GARSIDE J E, FORSYTH J S, TOWNEND D T A. The stability of burner flames[J]. Journal of the Institute of Fuel, 1945, 18: 175-185. [33] EDSE R. Studies on Burner Flames of Hydrogen-Oxygen Mixtures at High Pressures[M]. PN, 1952. [34] GRUMER J, HARRIS M E. Temperature dependence of stability limits of burner flames[J]. Industrial & Engineering Chemistry, 1954, 46(11): 2424-2430. [35] BOLLINGER L E, EDSE R. Effect of burner-tip temperature on flash back of turbulent hydrogen-oxygen flames[J]. Industrial & Engineering Chemistry, 1956, 48(4): 802-807. [36] DAVU D, FRANCO R, CHOUDHURI A, et al. Investigation on flashback propensity of syngas premixed flames[C]//41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Tucson, Arizona, 2005: 3585. [37] DAM B, LOVE N, CHOUDHURI A. Flashback propensity of syngas fuels[J]. Fuel, 2011, 90(2): 618-625. doi: 10.1016/j.fuel.2010.10.021 [38] EICHLER C, SATTELMAYER T. Experiments on flame flashback in a quasi-2D turbulent wall boundary layer for premixed methane-hydrogen-air mixtures[J]. Journal of Engineering for Gas Turbines and Power, 2011, 133(1): 011503. doi: 10.1115/1.4001985 [39] DUAN Z, SHAFFER B, MCDONELL V. Study of fuel composition, burner material, and tip temperature effects on flashback of enclosed jet flame[J]. Journal of Engineering for Gas Turbines and Power, 2013, 135(12): 121504. doi: 10.1115/1.4025129 [40] DUAN Z, SHAFFER B, MCDONELL V, et al. Influence of burner material, tip temperature, and geometrical flame configuration on flashback propensity of H2-air jet flames[J]. Journal of Engineering for Gas Turbines and Power, 2014, 136(2): 021502. doi: 10.1115/1.4025359 [41] HOFERICHTER V, SATTELMAYER T. Boundary layer flashback in premixed hydrogen-air flames with acoustic excitation[J]. Journal of Engineering for Gas Turbines and Power, 2018, 140(5): 051502. doi: 10.1115/1.4038128 [42] GOLDMANN A, DINKELACKER F. Experimental investigation and modeling of boundary layer flashback for non-swirling premixed hydrogen/ammonia/air flames[J]. Combustion and Flame, 2021, 226: 362-379. doi: 10.1016/j.combustflame.2020.12.021 [43] LEE S T, T’IEN J S. A numerical analysis of flame flashback in a premixed laminar system[J]. Combustion and Flame, 1982, 48: 273-285. doi: 10.1016/0010-2180(82)90134-1 [44] LEE S T, TSAI C H. Numerical investigation of steady laminar flame propagation in a circular tube[J]. Combustion and Flame, 1994, 99(3/4): 484-490. doi: 10.1016/0010-2180(94)90040-X [45] MALLENS R M M, DE GOEY L P H. Flash-back of laminar premixed methane/air flames on slitand tube burners[J]. Combustion Science and Technology, 1998, 136(1/6): 41-54. [46] DAOU J, MATALON M. Flame propagation in Poiseuille flow under adiabatic conditions[J]. Combustion and Flame, 2001, 124(3): 337-349. doi: 10.1016/S0010-2180(00)00209-1 [47] KURDYUMOV V N, FERNANDEZ-TARRAZO E. Lewis number effect on the propagation of premixed laminar flames in narrow open ducts[J]. Combustion and Flame, 2002, 128(4): 382-394. doi: 10.1016/S0010-2180(01)00358-3 [48] ENDRES A, SATTELMAYER T. Large eddy simulation of confined turbulent boundary layer flashback of premixed hydrogen-air flames[J]. International Journal of Heat and Fluid Flow, 2018, 72: 151-160. doi: 10.1016/j.ijheatfluidflow.2018.06.002 [49] GRUBER A, KERSTEIN A R, VALIEV D, et al. Modeling of mean flame shape during premixed flame flashback in turbulent boundary layers[J]. Proceedings of the Combustion Institute, 2015, 35(2): 1485-1492. doi: 10.1016/j.proci.2014.06.073 [50] GRUBER A, RICHARDSON E S, ADITYA K, et al. Direct numerical simulations of premixed and stratified flame propagation in turbulent channel flow[J]. Physical Review Fluids, 2018, 3: 110507. doi: 10.1103/PhysRevFluids.3.110507 [51] 曹敏, 张文普. 贫油直喷燃烧室回火的数值研究[J]. 机电工程, 2014, 31(9): 1111-1116CAO Min, ZHANG Wenpu. Numerical investigation of flame flashback in LDI combustor[J]. Journal of Mechanical & Electrical Engineering, 2014, 31(9): 1111-1116.(in Chinese) [52] ENDRES A, SATTELMAYER T. Numerical investigation of pressure influence on the confined turbulent boundary layer flashback process[J]. Fluids, 2019, 4(3): 146. doi: 10.3390/fluids4030146 [53] DING S, HUANG K, HAN Y, et al. Numerical study of the influence of wall roughness on laminar boundary layer flashback[J]. Physical Review Fluids, 2021, 6(2): 023201. doi: 10.1103/PhysRevFluids.6.023201 [54] AHMED U, PILLAI A L, CHAKRABORTY N, et al. Statistical behavior of turbulent kinetic energy transport in boundary layer flashback of hydrogen-rich premixed combustion[J]. Physical Review Fluids, 2019, 4(10): 103201. doi: 10.1103/PhysRevFluids.4.103201 [55] AHMED U, PILLAI A L, CHAKRABORTY N, et al. Surface density function evolution and the influence of strain rates during turbulent boundary layer flashback of hydrogen-rich premixed combustion[J]. Physics of Fluids, 2020, 32(5): 055112. doi: 10.1063/5.0004850 [56] KITANO T, TSUJI T, KUROSE R, et al. Effect of pressure oscillations on flashback characteristics in a turbulent channel flow[J]. Energy & Fuels, 2015, 29(10): 6815-6822. [57] LAI J, MOODY A, CHAKRABORTY N. Turbulent kinetic energy transport in head-on quenching of turbulent premixed flames in the context of Reynolds averaged Navier Stokes simulations[J]. Fuel, 2017, 199: 456-477. doi: 10.1016/j.fuel.2017.02.091 [58] 王沐晨, 李立州, 张珺, 等. 基于卷积神经网络气动力降阶模型的翼型优化方法[J]. 应用数学和力学, 2022, 43(1): 77-83WANG Muchen, LI Lizhou, ZHANG Jun, et al. An airfoil optimization method based on the convolutional neural network aerodynamic reduced order model[J]. Applied Mathematics and Mechanics, 2022, 43(1): 77-83.(in Chinese) [59] 周济民, 张海晨, 王沫然. 基于物理经验模型约束的机器学习方法在页岩油产量预测中的应用[J]. 应用数学和力学, 2021, 42(9): 881-890ZHOU Jimin, ZHANG Haichen, WANG Moran. Machine learning with physical empirical model constraints for prediction of shale oil production[J]. Applied Mathematics and Mechanics, 2021, 42(9): 881-890.(in Chinese)