Wave Surface Identification Based on Stereo Vision and Wave Theory: an Initial Attempt
-
摘要:
波高是波浪信息最基本的元素,对波高的精确测量无论是对波浪理论的研究还是数值方法的拓展,都起着指导和验证的作用。文中基于双目立体视觉原理自主搭建了波面光学测量系统,突破了传统测量设备如浪高仪等单点测量的局限性,并将波浪理论融入到数据后处理方法中,对常用的单纯依赖图像的光学测量方法进行了改进。通过在拖曳水池中对单向规则波瞬时波面的识别和重构,并将结果与浪高仪以及理论来波参数进行了对比验证,结果表明该测量系统在大范围波面的测量中误差在1%左右,最后对其在非规则的来波下进行了初步尝试。
Abstract:The wave height is the most basic element of wave information, and accurate measurement of wave heights plays a crucial role in both understanding wave theory and verifying numerical models. An improved optical measurement system was proposed based on the principle of binocular stereo vision, which breaks through the limitations of traditional measurement devices such as wave gauges and other single-point measurements, and improves the commonly used optical measurement method relying solely on images by involving the water wave theory into the data post-processing procedure. Through the identification and reconstruction of the unidirectional regular wave surface in a towing tank and the comparison of the results with the wave gauges and theoretical incoming wave parameters for validation, the research shows that, the measuring system has an error of about 1% in the measurement of a wide-area wave surface. Finally, a preliminary attempt was made on the irregular wave surface identification.
-
Key words:
- wave surface identification /
- stereo vision /
- wave theory
-
表 1 立体视觉测量系统标定参数
Table 1. Calibration parameters of the stereo vision measurement system
intrinsic parameter left camera right camera focal length ( fx, fy) / mm [3937.20908, 3936.40700] T [3925.72662, 3924.51774] T principal point (cx, cy) / pixel [1349.85569, 952.73155] T [1278.88564, 886.81188] T distortion (k1, k2, p1, p2) 0.01 × [−2.593, 32.052, 1.046, 0.321] T 0.01 × [ −2.287, 47.839, 0.656, −0.27] T extrinsic parameter rotation [−0.03702, 0.25002, 0.1387] T translation [−1397.67526, −141.94746, 153.43894] T pixel error / pixel [ 0.20014, 0.23406] T [ 0.13965, 0.21090] T 表 2 波幅、波数的统计量
Table 2. Statistics of the wave amplitude and the wave number
average maximum minimum variance standard deviation A/mm 40.2810 41.8385 38.3161 0.2096 0.4578 k 2.4803 2.5928 2.3435 0.0012 0.0351 表 3 双目测量、浪高仪测量与造波机输入参数对比
Table 3. Comparison of parameters obtained by the stereo vision, the wave gauges and the wave maker
parameter stereo vision wave gauge error wave maker error A/mm 40.2810 40.10 0.45% 40 0.70% k 2.4803 2.5112 1.23% 2.5116 1.25% f/Hz 0.7853 0.7899 0.58% 0.79 0.59% -
[1] THORPE S A. Dynamical processes of transfer at the sea surface[J]. Progress in Oceanography, 1995, 35: 315-352. doi: 10.1016/0079-6611(95)80002-B [2] MELVILLE W K. The role of surface-wave breaking in air-sea interaction[J]. Annual Review of Fluid Mechanics, 1996, 28: 279-321. doi: 10.1146/annurev.fl.28.010196.001431 [3] 王建华, 万德成. 全附体ONRT船模在波浪中自航的数值模拟[J]. 应用数学和力学, 2016, 37(12): 1345-1358WANG Jianhua, WAN Decheng. Investigation of self-propulsion in waves of fully appended ONR tumblehome model[J]. Applied Mathematics and Mechanics, 2016, 37(12): 1345-1358.(in Chinese) [4] 曾维鸿, 傅卓佳, 汤卓超. 水槽动力特性数值模拟的新型局部无网格配点法[J]. 应用数学和力学, 2022, 43(4): 392-400ZENG Weihong, FU Zhuojia, TANG Zhuochao. A novel localized meshless collocation method for numerical simulation of flume dynamic characteristics[J]. Applied Mathematics and Mechanics, 2022, 43(4): 392-400.(in Chinese) [5] 王本龙, 刘桦. 一种适用于非均匀地形的高阶Boussinesq水波模型[J]. 应用数学和力学, 2005, 26(6): 714-722 doi: 10.3321/j.issn:1000-0887.2005.06.013WANG Benlong, LIU Hua. Higher order Boussinesq-type equations for water waves on uneven bottom[J]. Applied Mathematics and Mechanics, 2005, 26(6): 714-722.(in Chinese) doi: 10.3321/j.issn:1000-0887.2005.06.013 [6] 王兆玲, 肖衡. 海洋表面波约化Hamilton方程的新发展: 从小幅波到有限幅波的推广[J]. 应用数学和力学, 2015, 36(11): 1135-1144 doi: 10.3879/j.issn.1000-0887.2015.11.002WANG Zhaoling, XIAO Heng. A new development of reduced Hamiltonian equations for ocean surface waves: an extension from small to finite amplitude[J]. Applied Mathematics and Mechanics, 2015, 36(11): 1135-1144.(in Chinese) doi: 10.3879/j.issn.1000-0887.2015.11.002 [7] 窦依琳, 罗志强. 均匀流中等源强相同浸没深度点源自由面波高数值模拟[J]. 应用数学和力学, 2020, 41(9): 1026-1035DOU Yilin, LUO Zhiqiang. Numerical simulation of free surface wave elevations of point sources with the same source intensity and immersion depth in uniform flow[J]. Applied Mathematics and Mechanics, 2020, 41(9): 1026-1035.(in Chinese) [8] KROGSTAD H E, BARSTOW S F. Recent advances in wave measurement technology[C]//The 9th International Offshore and Polar Engineering Conference. Brest, France, 1999: 19-28. [9] TUCKER M J, PITT E G. Waves in Ocean Engineering[M]. UK: Elsevier Ocean Engineering Book Series, 2001: 5, 521. [10] FORRISTALL G Z, BARSTOW S F, KROGSTAD H E, et al. Wave crest sensor intercomparison study: an overview of WACSIS[J]. Journal of Offshore Mechanics and Artic Engineering-Transactions of the ASME, 2004, 126(1): 26-34. doi: 10.1115/1.1641388 [11] PADUAN J D, WASHBURN L. High-frequency radar observations of ocean surface currents[J]. Annual Review of Marine Science, 2013, 5: 115-136. doi: 10.1146/annurev-marine-121211-172315 [12] HOLMAN R, HALLER M C. Remote sensing of the nearshore[J]. Annual Review of Marine Science, 2013, 5: 95-113. doi: 10.1146/annurev-marine-121211-172408 [13] APEL J R. Satellite sensing of ocean surface dynamics[J]. Annual Review of Earth and Planetary Sciences, 1980, 8: 303-342. doi: 10.1146/annurev.ea.08.050180.001511 [14] PHILLIPS O M. Remote sensing of the sea surface[J]. Annual Review of Fluid Mechanics, 1988, 20: 89-109. doi: 10.1146/annurev.fl.20.010188.000513 [15] GRUNO A, LIIBUSK A, ELLMANN A, et al. Determining sea surface heights using small footprint airborne laser scanning[C]//Proc SPIE, Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions. Dresden, Germany, 2013. [16] YAO A, WU C H. An automated image-based technique for tracking sequential surface wave profiles[J]. Ocean Engineering, 2005, 32(2): 157-173. doi: 10.1016/j.oceaneng.2004.07.004 [17] 李继磊, 郭晓宇, 王本龙. 基于激光阵列辅助的波面立体视觉测量[J]. 力学季刊, 2017, 38(3): 420-427 doi: 10.15959/j.cnki.0254-0053.2017.03.003LI Jilei, GUO Xiaoyu, WANG Benlong. Stereo photography measurement of wave surface with laser beams[J]. Chinese Quarterly of Mechanics, 2017, 38(3): 420-427.(in Chinese) doi: 10.15959/j.cnki.0254-0053.2017.03.003 [18] 孙鹤泉, 邱大洪, 沈永明, 等. 基于光学折射的波面形态测量[J]. 哈尔滨工业大学学报, 2006, 4: 609-612SUN Hequan, QIU Dahong, SHEN Yongming, et al. Wave measurement based on light refraction[J]. Journal of Harbin Institute of Technology, 2006, 4: 609-612.(in Chinese) [19] DOUXCHAMPS D, DEVRIENDT D, CAPART H, et al. Stereoscopic and velocimetric reconstructions of the free surface topography of antidune flows[J]. Experiments in Fluids, 2005, 39(3): 535-553. doi: 10.1007/s00348-005-0983-7 [20] MOLFETTA M G, BRUNO M F, PRATOLA L, et al. A sterescopic system to measure water waves in laboratories[J]. Remote Sensing, 2020, 12(14): 2288. doi: 10.3390/rs12142288 [21] GOMIT G, CHATELLIER L, CALLUAUD D, et al. Free surface measurement by stereo-refraction[J]. Experiments in Fluids, 2013, 54: 1540. doi: 10.1007/s00348-013-1540-4 [22] GOMIT G, ROUSSEAUX G, CHATELLIER L, et al. Spectral analysis of ship waves in deep water from accurate measurements of the free surface elevation by optical methods[J]. Physics of Fluids, 2014, 26(12): 122101. doi: 10.1063/1.4902415 [23] ENGELEN L, CREËLLE S, SCHINDFESSEL L, et al. Spatio-temporal image-based parametric water surface reconstruction: a novel methodology based on refraction[J]. Measurement Science and Technology, 2018, 29(3): 35302. doi: 10.1088/1361-6501/aa9eb7 [24] WANG Q, LIU H, FANG Y, et al. Experimental study on free-surface deformation and forces on a finite submerged plate induced by a solitary wave[J]. Physics of Fluids, 2020, 32(8): 086601. doi: 10.1063/5.0015903 [25] CHATELLIER L, JARNY S, GIBOUIN F, et al. A parametric PIV/DIC method for the measurement of free surface flows[J]. Experiments in Fluids, 2013, 54: 1488. doi: 10.1007/s00348-013-1488-4 [26] CHABCHOUB A, MOZUMI K, HOFFMANN N, et al. Directional soliton and breather beams[J]. Proceedings of the National Academy of Sciences, 2019, 116(20): 9759-9763. doi: 10.1073/pnas.1821970116 [27] POGGI M, TOSI F, BATSOS K, et al. On the synergies between machine learning and binocular stereo for depth estimation from images: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 44(9): 1-20. [28] CHENG X, ZHONG Y, HARANDI M, et al. Hierarchical neural architecture search for deep stereo matching[J]. Advances in Neural Information Processing Systems, 2020, 33: 22158-22169. [29] CHENG X, WANG P, YANG R. Learning depth with convolutional spatial propagation network[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(10): 2361-2379. doi: 10.1109/TPAMI.2019.2947374 [30] ŽBONTAR J, LECUN Y. Stereo matching by training a convolutional neural network to compare image patches[J]. The Journal of Machine Learning Research, 2016, 17: 1-32. [31] 卫志军, 翟钢军, 吴锤结. 气液耦合系统中固有频率的实验研究[J]. 应用数学和力学, 2021, 42(2): 133-141WEI Zhijun, ZHAI Gangjun, WU Chuijie. Experimental investigation of natural frequencies of gas-liquid coupled systems in tanks[J]. Applied Mathematics and Mechanics, 2021, 42(2): 133-141.(in Chinese) [32] STAMMER D, BALMASEDA M, HEIMBACH P, et al. Ocean data assimilation in support of climate applications: status and perspectives[J]. Annual Review of Marine Science, 2016, 8(1): 491-518. doi: 10.1146/annurev-marine-122414-034113 [33] ROBERTS L G. Machine perception of three-dimensional solids[D]. PhD Thesis. Cambridge: Massachusetts Institute of Technology, 1963. [34] MARR D. Vision-a Computational Investigation Into the Human Representation and Processing of Visual Information[M]. Massachusetts: The MIT Press, 2010. [35] ZHANG Z. A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11): 1330-1334. doi: 10.1109/34.888718 [36] HIRSCHMULLER H. Stereo processing by semi-global matching and mutual information[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(2): 328-341. doi: 10.1109/TPAMI.2007.1166 [37] GONZALEZ R C, WOODS R E. Digital Image Processing[M]. New Jersey: Prentice Hall, 2002. [38] HOLLAND P W, WELSCH R E. Robust regression using iteratively reweighted least-squares[J]. Communications in Statistics:Theory and Methods, 1977, 6(9): 813-827. [39] DUMOUCHEL W H, O’BRIEN F L. Integrating a robust option into a multiple regression computing environment[C]//Computer Science and Statistics: Proceedings of the 21st Symposium on the Interface. Alexandria, 1989.