留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于立体视觉和波浪理论的波面测量方法初探

李山 李晔

李山,李晔. 基于立体视觉和波浪理论的波面测量方法初探 [J]. 应用数学和力学,2022,43(12):1359-1369 doi: 10.21656/1000-0887.430026
引用本文: 李山,李晔. 基于立体视觉和波浪理论的波面测量方法初探 [J]. 应用数学和力学,2022,43(12):1359-1369 doi: 10.21656/1000-0887.430026
LI Shan, LI Ye. Wave Surface Identification Based on Stereo Vision and Wave Theory: an Initial Attempt[J]. Applied Mathematics and Mechanics, 2022, 43(12): 1359-1369. doi: 10.21656/1000-0887.430026
Citation: LI Shan, LI Ye. Wave Surface Identification Based on Stereo Vision and Wave Theory: an Initial Attempt[J]. Applied Mathematics and Mechanics, 2022, 43(12): 1359-1369. doi: 10.21656/1000-0887.430026

基于立体视觉和波浪理论的波面测量方法初探

doi: 10.21656/1000-0887.430026
基金项目: 国家自然科学基金(11872248);水下测控技术重点实验室基金(61424070603)
详细信息
    作者简介:

    李山 (1988—),女,博士 ( E-mail:lish@sjtu.edu.cn

    李晔 (1977—),男,教授,博士,博士生导师 (通讯作者. E-mail:ye.li@sjtu.edu.cn

  • 中图分类号: O353.5

Wave Surface Identification Based on Stereo Vision and Wave Theory: an Initial Attempt

  • 摘要:

    波高是波浪信息最基本的元素,对波高的精确测量无论是对波浪理论的研究还是数值方法的拓展,都起着指导和验证的作用。文中基于双目立体视觉原理自主搭建了波面光学测量系统,突破了传统测量设备如浪高仪等单点测量的局限性,并将波浪理论融入到数据后处理方法中,对常用的单纯依赖图像的光学测量方法进行了改进。通过在拖曳水池中对单向规则波瞬时波面的识别和重构,并将结果与浪高仪以及理论来波参数进行了对比验证,结果表明该测量系统在大范围波面的测量中误差在1%左右,最后对其在非规则的来波下进行了初步尝试。

  • 图  1  双目测量原理

    Figure  1.  The principle of stereo vision measurement

    图  2  立体视觉测量经典流程

    Figure  2.  The standard procedure of the stereo vision measurement system

    图  3  改进的双目测量系统

    Figure  3.  The improved stereo vision measurement system

    图  4  试验装置示意图

    Figure  4.  Schematic diagram of the experiment setup

    图  5  试验照片:(a) 聚乙烯泡沫;(b) 标定示例;(c) 左相机瞬时图像;(d) 右相机瞬时图像

    Figure  5.  Experimental photos: (a) the polyethylene marker; (b) the snapshot of calibration; (c) the snapshot of the left camera; (d) the snapshot of the right camera

    图  6  重构出的瞬时波面图: (a) t=20 s;(b) t=30 s;(c) t=40 s;(d) t=50 s (2为1的侧视图)

    Figure  6.  Reconstructed wave contours: (a) t=20 s; (b) t=30 s; (c) t=40 s; (d) t=50 s (2 is the side-view of 1)

    图  7  拟合后的瞬时波面图: (a) t=20 s;(b) t=30 s; (c) t=40 s; (d) t=50 s

    Figure  7.  Wave contours: (a) t=20 s; (b) t=30 s; (c) t=40 s; (d) t=50 s

    图  8  波高随时间的变化曲线

    Figure  8.  Profiles of wave heights varying with time

    图  9  重构出的瞬时波面图:(a) 不规则波;(b) 图9(a)的侧视图

    Figure  9.  Reconstructed wave contours: (a) irregular waves; (b) the side-view of fig. 9(a)

    表  1  立体视觉测量系统标定参数

    Table  1.   Calibration parameters of the stereo vision measurement system

    intrinsic parameterleft cameraright camera
    focal length ( fx, fy) / mm[3937.20908, 3936.40700] T[3925.72662, 3924.51774] T
    principal point (cx, cy) / pixel[1349.85569, 952.73155] T[1278.88564, 886.81188] T
    distortion (k1, k2, p1, p2)0.01 × [−2.593, 32.052, 1.046, 0.321] T0.01 × [ −2.287, 47.839, 0.656, −0.27] T
    extrinsic parameter
    rotation[−0.03702, 0.25002, 0.1387] T
    translation[−1397.67526, −141.94746, 153.43894] T
    pixel error / pixel[ 0.20014, 0.23406] T[ 0.13965, 0.21090] T
    下载: 导出CSV

    表  2  波幅、波数的统计量

    Table  2.   Statistics of the wave amplitude and the wave number

    averagemaximumminimumvariancestandard deviation
    A/mm40.281041.838538.31610.20960.4578
    k2.48032.59282.34350.00120.0351
    下载: 导出CSV

    表  3  双目测量、浪高仪测量与造波机输入参数对比

    Table  3.   Comparison of parameters obtained by the stereo vision, the wave gauges and the wave maker

    parameterstereo visionwave gaugeerrorwave makererror
    A/mm40.281040.100.45%400.70%
    k2.48032.51121.23%2.51161.25%
    f/Hz0.78530.78990.58%0.790.59%
    下载: 导出CSV
  • [1] THORPE S A. Dynamical processes of transfer at the sea surface[J]. Progress in Oceanography, 1995, 35: 315-352. doi: 10.1016/0079-6611(95)80002-B
    [2] MELVILLE W K. The role of surface-wave breaking in air-sea interaction[J]. Annual Review of Fluid Mechanics, 1996, 28: 279-321. doi: 10.1146/annurev.fl.28.010196.001431
    [3] 王建华, 万德成. 全附体ONRT船模在波浪中自航的数值模拟[J]. 应用数学和力学, 2016, 37(12): 1345-1358

    WANG Jianhua, WAN Decheng. Investigation of self-propulsion in waves of fully appended ONR tumblehome model[J]. Applied Mathematics and Mechanics, 2016, 37(12): 1345-1358.(in Chinese)
    [4] 曾维鸿, 傅卓佳, 汤卓超. 水槽动力特性数值模拟的新型局部无网格配点法[J]. 应用数学和力学, 2022, 43(4): 392-400

    ZENG Weihong, FU Zhuojia, TANG Zhuochao. A novel localized meshless collocation method for numerical simulation of flume dynamic characteristics[J]. Applied Mathematics and Mechanics, 2022, 43(4): 392-400.(in Chinese)
    [5] 王本龙, 刘桦. 一种适用于非均匀地形的高阶Boussinesq水波模型[J]. 应用数学和力学, 2005, 26(6): 714-722 doi: 10.3321/j.issn:1000-0887.2005.06.013

    WANG Benlong, LIU Hua. Higher order Boussinesq-type equations for water waves on uneven bottom[J]. Applied Mathematics and Mechanics, 2005, 26(6): 714-722.(in Chinese) doi: 10.3321/j.issn:1000-0887.2005.06.013
    [6] 王兆玲, 肖衡. 海洋表面波约化Hamilton方程的新发展: 从小幅波到有限幅波的推广[J]. 应用数学和力学, 2015, 36(11): 1135-1144 doi: 10.3879/j.issn.1000-0887.2015.11.002

    WANG Zhaoling, XIAO Heng. A new development of reduced Hamiltonian equations for ocean surface waves: an extension from small to finite amplitude[J]. Applied Mathematics and Mechanics, 2015, 36(11): 1135-1144.(in Chinese) doi: 10.3879/j.issn.1000-0887.2015.11.002
    [7] 窦依琳, 罗志强. 均匀流中等源强相同浸没深度点源自由面波高数值模拟[J]. 应用数学和力学, 2020, 41(9): 1026-1035

    DOU Yilin, LUO Zhiqiang. Numerical simulation of free surface wave elevations of point sources with the same source intensity and immersion depth in uniform flow[J]. Applied Mathematics and Mechanics, 2020, 41(9): 1026-1035.(in Chinese)
    [8] KROGSTAD H E, BARSTOW S F. Recent advances in wave measurement technology[C]//The 9th International Offshore and Polar Engineering Conference. Brest, France, 1999: 19-28.
    [9] TUCKER M J, PITT E G. Waves in Ocean Engineering[M]. UK: Elsevier Ocean Engineering Book Series, 2001: 5, 521.
    [10] FORRISTALL G Z, BARSTOW S F, KROGSTAD H E, et al. Wave crest sensor intercomparison study: an overview of WACSIS[J]. Journal of Offshore Mechanics and Artic Engineering-Transactions of the ASME, 2004, 126(1): 26-34. doi: 10.1115/1.1641388
    [11] PADUAN J D, WASHBURN L. High-frequency radar observations of ocean surface currents[J]. Annual Review of Marine Science, 2013, 5: 115-136. doi: 10.1146/annurev-marine-121211-172315
    [12] HOLMAN R, HALLER M C. Remote sensing of the nearshore[J]. Annual Review of Marine Science, 2013, 5: 95-113. doi: 10.1146/annurev-marine-121211-172408
    [13] APEL J R. Satellite sensing of ocean surface dynamics[J]. Annual Review of Earth and Planetary Sciences, 1980, 8: 303-342. doi: 10.1146/annurev.ea.08.050180.001511
    [14] PHILLIPS O M. Remote sensing of the sea surface[J]. Annual Review of Fluid Mechanics, 1988, 20: 89-109. doi: 10.1146/annurev.fl.20.010188.000513
    [15] GRUNO A, LIIBUSK A, ELLMANN A, et al. Determining sea surface heights using small footprint airborne laser scanning[C]//Proc SPIE, Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions. Dresden, Germany, 2013.
    [16] YAO A, WU C H. An automated image-based technique for tracking sequential surface wave profiles[J]. Ocean Engineering, 2005, 32(2): 157-173. doi: 10.1016/j.oceaneng.2004.07.004
    [17] 李继磊, 郭晓宇, 王本龙. 基于激光阵列辅助的波面立体视觉测量[J]. 力学季刊, 2017, 38(3): 420-427 doi: 10.15959/j.cnki.0254-0053.2017.03.003

    LI Jilei, GUO Xiaoyu, WANG Benlong. Stereo photography measurement of wave surface with laser beams[J]. Chinese Quarterly of Mechanics, 2017, 38(3): 420-427.(in Chinese) doi: 10.15959/j.cnki.0254-0053.2017.03.003
    [18] 孙鹤泉, 邱大洪, 沈永明, 等. 基于光学折射的波面形态测量[J]. 哈尔滨工业大学学报, 2006, 4: 609-612

    SUN Hequan, QIU Dahong, SHEN Yongming, et al. Wave measurement based on light refraction[J]. Journal of Harbin Institute of Technology, 2006, 4: 609-612.(in Chinese)
    [19] DOUXCHAMPS D, DEVRIENDT D, CAPART H, et al. Stereoscopic and velocimetric reconstructions of the free surface topography of antidune flows[J]. Experiments in Fluids, 2005, 39(3): 535-553. doi: 10.1007/s00348-005-0983-7
    [20] MOLFETTA M G, BRUNO M F, PRATOLA L, et al. A sterescopic system to measure water waves in laboratories[J]. Remote Sensing, 2020, 12(14): 2288. doi: 10.3390/rs12142288
    [21] GOMIT G, CHATELLIER L, CALLUAUD D, et al. Free surface measurement by stereo-refraction[J]. Experiments in Fluids, 2013, 54: 1540. doi: 10.1007/s00348-013-1540-4
    [22] GOMIT G, ROUSSEAUX G, CHATELLIER L, et al. Spectral analysis of ship waves in deep water from accurate measurements of the free surface elevation by optical methods[J]. Physics of Fluids, 2014, 26(12): 122101. doi: 10.1063/1.4902415
    [23] ENGELEN L, CREËLLE S, SCHINDFESSEL L, et al. Spatio-temporal image-based parametric water surface reconstruction: a novel methodology based on refraction[J]. Measurement Science and Technology, 2018, 29(3): 35302. doi: 10.1088/1361-6501/aa9eb7
    [24] WANG Q, LIU H, FANG Y, et al. Experimental study on free-surface deformation and forces on a finite submerged plate induced by a solitary wave[J]. Physics of Fluids, 2020, 32(8): 086601. doi: 10.1063/5.0015903
    [25] CHATELLIER L, JARNY S, GIBOUIN F, et al. A parametric PIV/DIC method for the measurement of free surface flows[J]. Experiments in Fluids, 2013, 54: 1488. doi: 10.1007/s00348-013-1488-4
    [26] CHABCHOUB A, MOZUMI K, HOFFMANN N, et al. Directional soliton and breather beams[J]. Proceedings of the National Academy of Sciences, 2019, 116(20): 9759-9763. doi: 10.1073/pnas.1821970116
    [27] POGGI M, TOSI F, BATSOS K, et al. On the synergies between machine learning and binocular stereo for depth estimation from images: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 44(9): 1-20.
    [28] CHENG X, ZHONG Y, HARANDI M, et al. Hierarchical neural architecture search for deep stereo matching[J]. Advances in Neural Information Processing Systems, 2020, 33: 22158-22169.
    [29] CHENG X, WANG P, YANG R. Learning depth with convolutional spatial propagation network[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(10): 2361-2379. doi: 10.1109/TPAMI.2019.2947374
    [30] ŽBONTAR J, LECUN Y. Stereo matching by training a convolutional neural network to compare image patches[J]. The Journal of Machine Learning Research, 2016, 17: 1-32.
    [31] 卫志军, 翟钢军, 吴锤结. 气液耦合系统中固有频率的实验研究[J]. 应用数学和力学, 2021, 42(2): 133-141

    WEI Zhijun, ZHAI Gangjun, WU Chuijie. Experimental investigation of natural frequencies of gas-liquid coupled systems in tanks[J]. Applied Mathematics and Mechanics, 2021, 42(2): 133-141.(in Chinese)
    [32] STAMMER D, BALMASEDA M, HEIMBACH P, et al. Ocean data assimilation in support of climate applications: status and perspectives[J]. Annual Review of Marine Science, 2016, 8(1): 491-518. doi: 10.1146/annurev-marine-122414-034113
    [33] ROBERTS L G. Machine perception of three-dimensional solids[D]. PhD Thesis. Cambridge: Massachusetts Institute of Technology, 1963.
    [34] MARR D. Vision-a Computational Investigation Into the Human Representation and Processing of Visual Information[M]. Massachusetts: The MIT Press, 2010.
    [35] ZHANG Z. A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11): 1330-1334. doi: 10.1109/34.888718
    [36] HIRSCHMULLER H. Stereo processing by semi-global matching and mutual information[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(2): 328-341. doi: 10.1109/TPAMI.2007.1166
    [37] GONZALEZ R C, WOODS R E. Digital Image Processing[M]. New Jersey: Prentice Hall, 2002.
    [38] HOLLAND P W, WELSCH R E. Robust regression using iteratively reweighted least-squares[J]. Communications in Statistics:Theory and Methods, 1977, 6(9): 813-827.
    [39] DUMOUCHEL W H, O’BRIEN F L. Integrating a robust option into a multiple regression computing environment[C]//Computer Science and Statistics: Proceedings of the 21st Symposium on the Interface. Alexandria, 1989.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  358
  • HTML全文浏览量:  191
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-13
  • 修回日期:  2022-06-14
  • 网络出版日期:  2022-12-27
  • 刊出日期:  2022-12-01

目录

    /

    返回文章
    返回