留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Boussinesq方程温和解的全局适定性

周艳平 王珣 别群益

周艳平,王珣,别群益. Boussinesq方程温和解的全局适定性 [J]. 应用数学和力学,2022,43(8):920-926 doi: 10.21656/1000-0887.430036
引用本文: 周艳平,王珣,别群益. Boussinesq方程温和解的全局适定性 [J]. 应用数学和力学,2022,43(8):920-926 doi: 10.21656/1000-0887.430036
ZHOU Yanping, WANG Xun, BIE Qunyi. Global Well-Posedness of the Mild Solutions to the Boussinesq Equations[J]. Applied Mathematics and Mechanics, 2022, 43(8): 920-926. doi: 10.21656/1000-0887.430036
Citation: ZHOU Yanping, WANG Xun, BIE Qunyi. Global Well-Posedness of the Mild Solutions to the Boussinesq Equations[J]. Applied Mathematics and Mechanics, 2022, 43(8): 920-926. doi: 10.21656/1000-0887.430036

Boussinesq方程温和解的全局适定性

doi: 10.21656/1000-0887.430036
基金项目: 国家自然科学基金(11901346;11871305)
详细信息
    作者简介:

    周艳平(1980—),女,博士 (通讯作者. E-mail:zhyp5208@163.com)

    王珣(1997—),女,硕士生 (E-mail:3526403334@qq.com)

    别群益(1970—),男,教授,博士,博士生导师 (E-mail:qybie@126.com)

  • 中图分类号: O175.2

Global Well-Posedness of the Mild Solutions to the Boussinesq Equations

  • 摘要:

    Boussinesq方程作为描述许多地球物理现象的模型,是Navier-Stokes方程与热力学方程之间耦合的零阶近似。 利用隐函数定理,研究带黏性高维Boussinesq系统,并得到了小初值位于尺度不变空间时温和解的全局适定性。

  • [1] GILL A E, ADRIAN E. Atmosphere-Ocean Dynamics[M]. San Diego: Academic Press, 1982.
    [2] CÓRDOBA D, FEFFERMAN C, LLAVE R D L. On squirt singularities in hydrodynamics[J]. SIAM Journal on Mathematical Analysis, 2004, 36(1): 204-213. doi: 10.1137/S0036141003424095
    [3] MAJDA A. Introduction to PDEs and Waves for the Atmosphere and Ocean[M]. American Mathematical Society, 2003.
    [4] PEDLOSKY J, ROBERSON J S. Geophysical fluid dynamics by Joseph Pedlosky[J]. The Journal of the Acoustical Society of America, 1988, 83(3): 1207. doi: 10.1121/1.396028
    [5] PEDLOSKY J. Geophysical Fluid Dynamics[M]. New York: Springer-Verlag, 1987.
    [6] 郭连红, 李远飞. 大尺度湿大气原始方程组对边界参数的连续依赖性[J]. 应用数学和力学, 2020, 41(9): 1036-1047

    GUO Lianhong, LI Yuanfei. Continous dependence on boundary parameters of the original equations for large-scale wet atmosphere[J]. Applied Mathematics and Mechanics, 2020, 41(9): 1036-1047.(in Chinese)
    [7] 施惟慧, 王曰朋. Navier-Stokes方程的奇异性对大气运动方程组的影响[J]. 应用数学和力学, 2007, 28(5): 614-618 doi: 10.3321/j.issn:1000-0887.2007.05.013

    SHI Weihui, WANG Yuepeng. Impact of singularity of Navier-Stokes equation upon the atmospheric motion equations[J]. Applied Mathematics and Mechanics, 2007, 28(5): 614-618.(in Chinese) doi: 10.3321/j.issn:1000-0887.2007.05.013
    [8] ABIDI H, HMIDI T. On the global well-posedness for Boussinesq system[J]. Journal of Differential Equations, 2007, 233(1): 199-220. doi: 10.1016/j.jde.2006.10.008
    [9] CHAE D. Global regularity for the 2D Boussinesq equations with partial viscosity terms[J]. Advances in Mathematics, 2006, 203(2): 497-513. doi: 10.1016/j.aim.2005.05.001
    [10] CANNON J R, DIBENEDETTO E. The inital value problem for the Boussinesq equations with data in Lp[M]//RAUTMANN R. Approximation Methods for Navier-Stokes Problems. Berlin, Heidelberg: Springer, 1980: 129-144.
    [11] DANCHIN R, PAICU M. Existence and uniqueness results for the Boussineq system with data in Lorentz spaces[J]. Physica D: Nonlinear Phenomena, 2008, 237(10/12): 1444-1460.
    [12] DANCHIN R, PAICU M. Global well-posedness issue for the inviscid Boussineq system with Youdovich’s type data[J]. Communications in Mathematical Physics, 2009, 290: 1-14. doi: 10.1007/s00220-009-0821-5
    [13] HISHIDA T. On a class of stable steady flows to the exterior convection problem[J]. Journal of Differential Equations, 1997, 141(1): 54-85. doi: 10.1006/jdeq.1997.3323
    [14] SAWADA O, TANIUCHI Y. On the Boussinesq flow with nondecaying initial data[J]. Funkcialaj Ekvacioj, 2004, 47(2): 225-250. doi: 10.1619/fesi.47.225
    [15] BRANDOLESE L, SCHONBEK M. Large time decay and growth for solutions of a viscous Boussinesq system[J]. Transactions of the American Mathematical Society, 2012, 364(10): 5057-5090. doi: 10.1090/S0002-9947-2012-05432-8
    [16] KARCH G, PRIOUX N. Self-similarity in viscous Boussinesq equations[J]. Proceedings of the American Mathematical Society, 2008, 136(3): 879-888.
    [17] KOZONO H, MIURA M, SUGIYAMA Y. Existence and uniqueness theorem on mild solutions to the Keller-Segel system coupled with the Navier-Stokes fluid[J]. Journal of Functional Analysis, 2016, 270(5): 1663-1683. doi: 10.1016/j.jfa.2015.10.016
    [18] TAN Z, WU W, ZHOU J. Existence and uniqueness of mild solutions to the magneto-hydro-dynamic equations[J]. Applied Mathematics Letters, 2018, 77: 27-34. doi: 10.1016/j.aml.2017.09.013
    [19] ZHANG Q, DENG X, BIE Q. Existence and uniqueness of mild solutions to the incompressible nematic liquid crystal flow[J]. Computers and Mathematics With Applications, 2019, 77(9): 2489-2498. doi: 10.1016/j.camwa.2018.12.036
    [20] CANNONE M. Harmonic analysis tools for solving the incompressible Navier-Stokes equations[M]//FRIEDLANDER S, SERRE D. Handbook of Mathematical Fluid Dynamics: Vol 3. Amsterdam, North-Holland: Elsevier, 2004: 161-244.
  • 加载中
计量
  • 文章访问数:  910
  • HTML全文浏览量:  251
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-15
  • 修回日期:  2022-06-10
  • 网络出版日期:  2022-07-06
  • 刊出日期:  2022-08-01

目录

    /

    返回文章
    返回