留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纤维/树脂基复合材料曲壁蜂窝夹芯结构的三点弯曲性能

刘鑫 吴倩倩 于国财 吴林志

刘鑫,吴倩倩,于国财,吴林志. 碳纤维/树脂基复合材料曲壁蜂窝夹芯结构的三点弯曲性能 [J]. 应用数学和力学,2022,43(5):490-498 doi: 10.21656/1000-0887.430061
引用本文: 刘鑫,吴倩倩,于国财,吴林志. 碳纤维/树脂基复合材料曲壁蜂窝夹芯结构的三点弯曲性能 [J]. 应用数学和力学,2022,43(5):490-498 doi: 10.21656/1000-0887.430061
LIU Xin, WU Qianqian, YU Guocai, WU Linzhi. Three-Point Bending Properties of Carbon Fiber Reinforced Polymer Composite Honeycomb Sandwich Structures With Curved Wall[J]. Applied Mathematics and Mechanics, 2022, 43(5): 490-498. doi: 10.21656/1000-0887.430061
Citation: LIU Xin, WU Qianqian, YU Guocai, WU Linzhi. Three-Point Bending Properties of Carbon Fiber Reinforced Polymer Composite Honeycomb Sandwich Structures With Curved Wall[J]. Applied Mathematics and Mechanics, 2022, 43(5): 490-498. doi: 10.21656/1000-0887.430061

碳纤维/树脂基复合材料曲壁蜂窝夹芯结构的三点弯曲性能

doi: 10.21656/1000-0887.430061
基金项目: 国家自然科学基金(12002107);中国博士后科学基金(2019M661268)
详细信息
    作者简介:

    刘鑫(1997—),男,博士( E-mail:liuxinhit07@163.com

    吴倩倩(1989—),女,副教授,博士生导师(通讯作者. E-mail:qqwu@hit.edu.cn

  • 中图分类号: V214.6; V258+.3

Three-Point Bending Properties of Carbon Fiber Reinforced Polymer Composite Honeycomb Sandwich Structures With Curved Wall

  • 摘要:

    为研究碳纤维复合材料(CFRP)曲壁蜂窝结构在三点弯曲载荷作用下的承载特性与失效模式,对不同芯层高度、面板厚度的结构进行了理论预报、数值模拟及试验。首先,根据夹芯结构的主要失效模式,提出了相应的理论预报公式,并绘制了失效机制图;其次,建立了CFRP曲壁蜂窝夹芯结构的有限元仿真模型,对其在三点弯曲载荷作用下的典型失效行为进行模拟;最后,通过模压成型工艺制备了不同尺寸的CFRP曲壁蜂窝夹芯结构,并将试验结果与理论、模拟结果进行比较。结果表明,蜂窝夹芯结构承载能力与芯层高度、面板厚度密切相关,结构芯层及面板刚度随其尺寸的减小而下降,导致结构失效模式由面芯脱黏失效变为面板压溃失效。

  • 图  1  复合材料蜂窝夹芯结构三点弯曲试验示意图

    Figure  1.  The test schematic diagram of the composite honeycomb sandwich structure under 3-point bending load

    图  2  蜂窝夹芯结构失效机制图

    Figure  2.  Failure mechanism map of the honeycomb sandwich structures

    图  3  曲壁蜂窝夹芯结构制备流程

    Figure  3.  The preparation process of the honeycomb sandwich structure with curved wall

    图  4  试验实物图

    Figure  4.  The test photo

    图  5  试件A、B及C的试验结果

    Figure  5.  Test results of specimens A, B and C

    图  6  试件A、B及C的数值模拟结果

    Figure  6.  Simulation results of specimens A, B and C

    图  7  试验与数值模拟载荷-位移曲线

    注 为了解释图中的颜色,读者可以参考本文的电子网页版本。

    Figure  7.  Load-displacement curves of test and simulation

    表  1  碳纤维/树脂基复合材料力学性能

    Table  1.   Mechanical properties of carbon fiber reinforced polymer composites

    parametervalueparametervalueparametervalue
    E1/GPa149.6G12/MPa4 000$ \sigma _3^{\text{T}} $/MPa28
    E2/GPa8.7G13/MPa4 000$ \sigma _3^{\text{C}} $/MPa191
    E3/GPa8.7G23/MPa3 000${\tau _{12}} $/MPa73
    ${\mu _{12}} $0.3$ \sigma _1^{\text{T}} $/MPa2 444${\tau _{13}} $/MPa73
    ${\mu _{13}} $0.3$ \sigma _1^{\text{C}} $/MPa1 000${\tau _{23}} $/MPa73
    ${\mu _{23}} $0.3$ \sigma _2^{\text{T}} $/MPa28σlay/MPa25
    $ \sigma _2^{\text{C}} $/MPa191
    下载: 导出CSV

    表  2  试件几何尺寸

    Table  2.   The geometry of specimens

    specimencore length l/mmcore width b/mmcore height H/mmfacesheet thickness tf /mm
    A19674.530.40.76
    B19674.115.30.76
    C19674.215.50.26
    下载: 导出CSV

    表  3  试件的其他参数

    Table  3.   Other parameters of specimens

    specimennumber of layers (core)angle of each layer (core)number of layers (face)angle of each layer (face)quality M/g
    A3[0°/90°/0°]8[0°/90°/±45°]2s122.8
    B3[0°/90°/0°]8[0°/90°/±45°]2s85
    C3[0°/90°/0°]3[0°/90°/0°]62.7
    下载: 导出CSV

    表  4  试件A、B及C理论预测、模拟及试验结果

    Table  4.   Results of specimens A, B and C obtained through theory, simulation and experiment

    specimentheoretical failure modenumerical failure modeexperimental failure modePt /NPn /NPe /N(PePt)/Pe(PnPe)/Pn
    Adebondingdebondingdebonding17 95221 75520 103.90.1070.076
    Bdebondingdebondingdebonding10 1769 324.48 237.5−0.2350.116
    Cface crushingface crushingface crushing7 286.76 119.66 814.5−0.068−0.114
    下载: 导出CSV
  • [1] 王永福, 漆文凯, 沈承. 弹性约束边界条件下矩形蜂窝夹芯板的自由振动分析[J]. 应用数学和力学, 2019, 40(6): 583-594. (WANG Yongfu, QI Wenkai, SHEN Cheng. Free vibration analysis of rectangular honeycomb-cored plates under elastically constrained boundary conditions[J]. Applied Mathematics and Mechanics, 2019, 40(6): 583-594.(in Chinese)
    [2] THOMAS T, TIWARI G. Crushing behavior of honeycomb structure: a review[J]. International Journal of Crashworthiness, 2019, 24(5): 555-579. doi: 10.1080/13588265.2018.1480471
    [3] LIANG H, SONG B, PENG P, et al. Preparation of three-dimensional honeycomb carbon materials and their adsorption of Cr (Ⅵ)[J]. Chemical Engineering Journal, 2019, 367: 9-16. doi: 10.1016/j.cej.2019.02.121
    [4] IVANEZ I, FERNANDEZ-CAÑADAS L M, SANCHEZ-SAEZ S. Compressive deformation and energy-absorption capability of aluminium honeycomb core[J]. Composite Structures, 2017, 174: 123-133. doi: 10.1016/j.compstruct.2017.04.056
    [5] YANG W, ZHANG X, YANG K, et al. Shear property characterization of aramid paper and its application to the prediction of honeycomb behaviors[J]. Composite Structures, 2020, 254: 112800. doi: 10.1016/j.compstruct.2020.112800
    [6] UDDIN M, GANDY H T, RAHMAN M M, et al. Adhesiveless honeycomb sandwich structures of prepreg carbon fiber composites for primary structural applications[J]. Advanced Composites and Hybrid Materials, 2019, 2(2): 339-350. doi: 10.1007/s42114-019-00096-6
    [7] 杨志韬, 于国财, 刘鑫, 等. 多级复合材料蜂窝结构的力学性能[J]. 复合材料学报, 2019, 36(9): 2110-2118.

    YANG Zhitao, YU Guocai, LIU Xin, et al Mechanical properties of hierarchical composite honeycomb structures[J]. Acta Materiae Compositae Sinica, 2019, 36(9): 2110-2118.(in Chinese)
    [8] WANG J, SHI C, YANG N, et al. Strength, stiffness, and panel peeling strength of carbon fiber-reinforced composite sandwich structures with aluminum honeycomb cores for vehicle body[J]. Composite Structures, 2018, 184: 1189-1196. doi: 10.1016/j.compstruct.2017.10.038
    [9] RUSSELL B, DESHPANDE V, WADLEY H. Quasistatic deformation and failure modes of composite square honeycombs[J]. Journal of Mechanics of Materials and Structures, 2008, 3(7): 1315-1340. doi: 10.2140/jomms.2008.3.1315
    [10] CÔTÉ F, FLECK N, DESHPANDE V. Fatigue performance of sandwich beams with a pyramidal core[J]. International Journal of Fatigue, 2007, 29(8): 1402-1412. doi: 10.1016/j.ijfatigue.2006.11.013
    [11] 孟卫华, 王建军, 米栋, 等. 航空发动机用蜂窝材料应变率相关本构模型及应用研究[J]. 应用数学和力学, 2018, 39(6): 665-671. (MENG Weihua, WANG Jianjun, MI Dong, et al. Application of strain-rate-dependent material models to aero-engine honeycomb casing analysis[J]. Applied Mathematics and Mechanics, 2018, 39(6): 665-671.(in Chinese)
    [12] QIU K, WANG Z, ZHANG W. The effective elastic properties of flexible hexagonal honeycomb cores with consideration for geometric nonlinearity[J]. Aerospace Science and Technology, 2016, 58: 258-266. doi: 10.1016/j.ast.2016.08.026
    [13] KESHAVANARAYANA S R, SHAHVERDI H, KOTHARE A, et al. The effect of node bond adhesive fillet on uniaxial in-plane responses of hexagonal honeycomb core[J]. Composite Structures, 2017, 175: 111-122. doi: 10.1016/j.compstruct.2017.05.010
    [14] LU J L, LUO W, LI X Y, et al. Two-dimensional node-line semimetals in a honeycomb-kagome lattice[J]. Chinese Physics Letters, 2017, 34(5): 057302. doi: 10.1088/0256-307X/34/5/057302
    [15] CHEN H J, TSAI S W. Analysis and optimum design of composite grid structures[J]. Journal of Composite Materials, 1996, 30(4): 503-534. doi: 10.1177/002199839603000405
    [16] RUSSELL B, LIU T, FLECK N, et al. Quasi-static three-point bending of carbon fiber sandwich beams with square honeycomb cores[J]. Journal of Applied Mechanics-Transactions of the ASME, 2011, 78(3): 031008. doi: 10.1115/1.4003221
    [17] 范华林, 金丰年, 方岱宁. 格栅结构力学性能研究进展[J]. 力学进展, 2008, 38(1): 35-52. (FAN Hualin, JIN Fengnian, FANG Daining. Structural mechanics of lattice grids[J]. Advances in Mechanics, 2008, 38(1): 35-52.(in Chinese) doi: 10.3321/j.issn:1000-0992.2008.01.002
    [18] ALLEN H G. Analysis and Design of Structural Sandwich Panels[M]. Elsevier, 2013.
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  1239
  • HTML全文浏览量:  410
  • PDF下载量:  143
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-28
  • 修回日期:  2022-03-21
  • 网络出版日期:  2022-04-07
  • 刊出日期:  2022-05-01

目录

    /

    返回文章
    返回