留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热传导问题杂交基本解有限元法虚拟源点的探究

张凯 王克用 齐东平

张凯, 王克用, 齐东平. 热传导问题杂交基本解有限元法虚拟源点的探究[J]. 应用数学和力学, 2023, 44(4): 431-440. doi: 10.21656/1000-0887.430077
引用本文: 张凯, 王克用, 齐东平. 热传导问题杂交基本解有限元法虚拟源点的探究[J]. 应用数学和力学, 2023, 44(4): 431-440. doi: 10.21656/1000-0887.430077
ZHANG Kai, WANG Keyong, QI Dongping. Research on the Fictitious Source Points of the Hybrid Fundamental Solution-Based Finite Element Method for Heat Conduction Problems[J]. Applied Mathematics and Mechanics, 2023, 44(4): 431-440. doi: 10.21656/1000-0887.430077
Citation: ZHANG Kai, WANG Keyong, QI Dongping. Research on the Fictitious Source Points of the Hybrid Fundamental Solution-Based Finite Element Method for Heat Conduction Problems[J]. Applied Mathematics and Mechanics, 2023, 44(4): 431-440. doi: 10.21656/1000-0887.430077

热传导问题杂交基本解有限元法虚拟源点的探究

doi: 10.21656/1000-0887.430077
基金项目: 

上海市自然科学基金项目 19ZR1421400

详细信息
    作者简介:

    张凯(1996—),男,硕士生(E-mail: kai_zhangly@163.com)

    通讯作者:

    王克用(1975—),男,副教授,博士(通讯作者. E-mail: keyong_wang@126.com)

  • 中图分类号: O242.21;O343.1

Research on the Fictitious Source Points of the Hybrid Fundamental Solution-Based Finite Element Method for Heat Conduction Problems

  • 摘要: 针对热传导问题,提出了杂交基本解有限元法. 首先,假设两个独立场:一个为利用基本解线性组合近似的单元域内温度场,另一个为使用与传统有限元法相同形式的辅助网线温度场. 然后,利用修正变分泛函将上述两个独立场关联起来,并导出有限元列式. 然而,该方法的准确性很大程度上取决于源点的分布和数量,通常将源点布置在单元外部两种虚拟边界上:与单元相似的边界和圆形边界. 此外,还提出了双重虚拟边界,并与上述两种源点布局方式进行对比. 通过两个典型数值算例,验证了该文方法在不同源点布局下的有效性和对网格畸变的不敏感性.
  • 图  1  源点配置方式

    Figure  1.  Configurations of source points

    图  2  典型四节点单元和单元边形函数

    Figure  2.  A typical 4-node element and the element side shape functions

    图  3  正方形板与有限元网格

    Figure  3.  A square plate and the finite element meshes

    图  4  不同源点数目的四节点单元

    Figure  4.  A 4-node element with different numbers of source points

    图  5  无量纲参数λ对计算精度的影响

    Figure  5.  Effects of dimensionless parameter λ on the computation accuracy

    图  6  无量纲参数λ对矩阵He条件数的影响

    Figure  6.  Effects of dimensionless parameter λ on the condition number of matrix He

    图  7  网格畸变方案

    Figure  7.  Mesh distortion schemes

    图  8  畸变程度ψ对计算精度影响

    Figure  8.  Effects of distortion parameter ψ on the computation accuracy

    图  9  网格密度对计算精度的影响

    Figure  9.  Effects of the mesh density on the computation accuracy

    图  10  偏心环空与有限元网格

    Figure  10.  An eccentric annulus and the finite element meshes

    图  11  偏心环空温度u的等值线图

    Figure  11.  Contour plots of temperature u in the eccentric annulus

    图  12  单元形心处温度u沿周向的变化

    Figure  12.  Variations of temperature u at element centroids along the circumferential direction

    图  13  单元形心处热流分量qx1qx2沿周向的变化

    Figure  13.  Variations of heat flux components qx1 and qx2 at element centroids along the circumferential direction

    表  1  选择点处温度u的计算结果

    Table  1.   Computation results for temperature u at the selected points

    x1 x2 source point type HFS-FEM ABAQUS
    2×2 mesh 4×4 mesh 6×6 mesh 8×8 mesh 25×25 mesh
    0.02 0.48 1 40.375 3 40.410 3 40.418 2 40.420 7
    2 40.375 3 40.410 3 40.418 2 40.420 7 40.422 1
    3 40.403 3 40.417 4 40.420 1 40.421 1
    0.1 0.1 1 48.027 5 48.102 9 48.119 0 48.119 9
    2 48.027 5 48.102 9 48.119 0 48.119 9 48.123 8
    3 48.027 7 48.107 0 48.116 2 48.119 7
    0.34 0.44 1 41.304 1 41.453 3 41.479 8 41.480 2
    2 41.304 1 41.453 3 41.479 8 41.480 2 41.487 0
    3 41.286 2 41.447 3 41.479 7 41.487 8
    下载: 导出CSV

    表  2  选择点处热流分量qx2的计算结果

    Table  2.   Computation results for heat flux component qx2 at the selected points

    x1 x2 source point type HFS-FEM ABAQUS
    2×2 mesh 4×4 mesh 6×6 mesh 8×8 mesh 25×25 mesh
    0.02 0.48 1 20.180 5 20.882 7 21.002 7 21.044 3
    2 20.180 5 20.882 6 21.002 7 21.044 3 21.097 4
    3 20.111 2 20.863 1 21.010 0 21.062 4
    0.1 0.1 1 19.710 3 18.918 4 19.091 4 18.908 6
    2 19.710 3 18.918 4 19.091 5 18.908 6 18.931 8
    3 19.731 5 19.105 3 18.922 1 18.929 5
    0.34 0.44 1 21.594 2 24.337 3 24.853 8 24.148 8
    2 21.594 2 24.337 3 24.853 8 24.148 7 24.469 7
    3 21.446 9 23.796 8 23.991 0 24.084 1
    下载: 导出CSV

    表  3  CPU时间的对比

    Table  3.   Comparation of the CPU time

    method element CPU time tCPU/s
    HFS-FEM (type 3) 78 0.07
    ABAQUS 78 0.1
    300 0.2
    下载: 导出CSV
  • [1] JIROUSEK J, LEON N. A powerful finite element for plate bending[J]. Computer Methods in Applied Mechanics & Engineering, 1977, 12(1): 77-96.
    [2] JIROUSEK J, VENKATESH A. Hybrid Trefftz plane elasticity elements with p-method capabilities[J]. International Journal for Numerical Methods in Engineering, 1992, 35(7): 1443-1472. doi: 10.1002/nme.1620350705
    [3] QIN Q H, WANG H. MATLAB and C Programming for Trefftz Finite Element Methods[M]. Boca Raton: CRC Press, 2008.
    [4] WANG H, QIN Q H. Hybrid FEM with fundamental solutions as trial functions for heat conduction simulation[J]. Acta Mechanica Solida Sinica, 2009, 22(5): 487-498. doi: 10.1016/S0894-9166(09)60300-1
    [5] SHE Z, WANG K Y, LI P C. Thermal analysis of multilayer coated fiber-reinforced composites by the hybrid Trefftz finite element method[J]. Composite Structures, 2019, 224: 110992. doi: 10.1016/j.compstruct.2019.110992
    [6] WEISSER S. Arbitrary order Trefftz-like basis functions on polygonal meshes and realization in BEM-based FEM[J]. Computers & Mathematics With Applications, 2014, 67(7): 1390-1406.
    [7] ZHOU J C, WANG K Y, LI P C, MIAO X D. Hybrid fundamental solution based finite element method for axisymmetric potential problems[J]. Engineering Analysis With Boundary Elements, 2018, 91: 82-91. doi: 10.1016/j.enganabound.2018.03.009
    [8] ZHOU J C, WANG K Y, LI P C. Hybrid fundamental solution based finite element method for axisymmetric potential problems with arbitrary boundary conditions[J]. Computers & Structures, 2019, 212: 72-85.
    [9] 秦庆华. Hybrid-Trefftz有限元法的研究进展[J]. 力学进展, 1998, 28(1): 71-82. doi: 10.3321/j.issn:1000-0992.1998.01.006

    QIN Qinghua. Advances in hybrid-Trefftz finite element method[J]. Advances in Mechanics, 1998, 28(1): 71-82. (in Chinese) doi: 10.3321/j.issn:1000-0992.1998.01.006
    [10] 王克用, 黄争鸣, 李培超, 等. 正交各向异性轴对称位势问题的Trefftz有限元分析[J]. 应用数学和力学, 2013, 34(5): 462-469. doi: 10.3879/j.issn.1000-0887.2013.05.004

    WANG Keyong, HUANG Zhengming, LI Peichao, et al. Trefftz finite element analysis of axisymmetric potential problems in orthotropic media[J]. Applied Mathematics and Mechanics, 2013, 34(5): 462-469. (in Chinese) doi: 10.3879/j.issn.1000-0887.2013.05.004
    [11] CAO C Y, QIN Q H, YU A B. Micromechanical Analysis of heterogeneous composites using hybrid Trefftz FEM and hybrid fundamental solution based FEM[J]. Journal of Mechanics, 2013, 29(4): 661-674. doi: 10.1017/jmech.2013.54
    [12] WANG H, QIN Q H. Fundamental-solution-based finite element model for plane orthotropic elastic bodies[J]. European Journal of Mechanics A: Solids, 2010, 29(5): 801-809. doi: 10.1016/j.euromechsol.2010.05.003
    [13] CAO C Y, QIN Q H. Hybrid fundamental solution based finite element method: theory and applications[J]. Advances in Mathematical Physics, 2015, 2015: 916029.
    [14] WANG K Y, ZHOU J C, ZENG R Y. Hybrid Trefftz finite element method for axisymmetric elasticity problems under torsion[J]. Materials Today Communications, 2021, 27: 102420. doi: 10.1016/j.mtcomm.2021.102420
    [15] WANG H, LIN W, QIN Q H. Fundamental-solution-based hybrid finite element with singularity control for two-dimensional mixed-mode crack problems[J]. Engineering Analysis With Boundary Elements, 2019, 108: 267-278. doi: 10.1016/j.enganabound.2019.08.016
    [16] 周枫林, 谢贵重, 张见明, 等. 角度-距离复合变换法消除边界积分方程近奇异性[J]. 应用数学和力学, 2020, 41(5): 530-540. doi: 10.21656/1000-0887.400229

    ZHOU Fenglin, XIE Guizhong, ZHANG Jianming, et al. Near-singularity cancellation with the angle-distance transformation method for boundary integral equations[J]. Applied Mathematics and Mechanics, 2020, 41(5): 530-540. (in Chinese) doi: 10.21656/1000-0887.400229
    [17] GRABSKI J K, KARAGEORGHIS A. Moving pseudo-boundary method of fundamental solutions for nonlinear potential problems[J]. Engineering Analysis With Boundary Elements, 2019, 105: 78-86. doi: 10.1016/j.enganabound.2019.04.009
    [18] GORZELAŃCZYK P, KOŁODZIEJ J A. Some remarks concerning the shape of the source contour with application of the method of fundamental solutions to elastic torsion of prismatic rods[J]. Engineering Analysis With Boundary Elements, 2008, 32(1): 64-75. doi: 10.1016/j.enganabound.2007.05.004
    [19] 潘文峰, 戴海. 具有双重虚拟边界的基本解方法求解Stokes问题[J]. 中国科技论文, 2018, 13(5): 563-567. doi: 10.3969/j.issn.2095-2783.2018.05.015

    PAN Wenfeng, DAI Hai. Method of fundamental solutions with double fictitious boundaries for solving Stokes problems[J]. China Sciencepaper, 2018, 13(5): 563-567. (in Chinese) doi: 10.3969/j.issn.2095-2783.2018.05.015
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  436
  • HTML全文浏览量:  169
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-10
  • 修回日期:  2022-05-15
  • 刊出日期:  2023-04-01

目录

    /

    返回文章
    返回