Research on the Fictitious Source Points of the Hybrid Fundamental Solution-Based Finite Element Method for Heat Conduction Problems
-
摘要: 针对热传导问题,提出了杂交基本解有限元法. 首先,假设两个独立场:一个为利用基本解线性组合近似的单元域内温度场,另一个为使用与传统有限元法相同形式的辅助网线温度场. 然后,利用修正变分泛函将上述两个独立场关联起来,并导出有限元列式. 然而,该方法的准确性很大程度上取决于源点的分布和数量,通常将源点布置在单元外部两种虚拟边界上:与单元相似的边界和圆形边界. 此外,还提出了双重虚拟边界,并与上述两种源点布局方式进行对比. 通过两个典型数值算例,验证了该文方法在不同源点布局下的有效性和对网格畸变的不敏感性.Abstract: The hybrid fundamental solution-based finite element method was proposed for heat conduction problems. Firstly, 2 independent fields were assumed: the intra-element temperature field approximated through the linear combination of fundamental solutions, and the auxiliary frame temperature field in the same form as that in the conventional finite element method. Then, a modified variational functional was employed to link the 2 independent fields and derive the finite element formulation. However, the accuracy of the method is strongly dependent on the distribution and the number of source points. The source points were usually placed on 2 fictitious boundaries outside the element: one is similar to the element shape, the other is a circular one. Furthermore, the dual fictitious boundary scheme was proposed for comparison with the above fictitious boundaries. With different configurations of source points, 2 typical numerical examples were given to demonstrate the validity and the insensitivity to mesh distortion of the proposed method.
-
表 1 选择点处温度u的计算结果
Table 1. Computation results for temperature u at the selected points
x1 x2 source point type HFS-FEM ABAQUS 2×2 mesh 4×4 mesh 6×6 mesh 8×8 mesh 25×25 mesh 0.02 0.48 1 40.375 3 40.410 3 40.418 2 40.420 7 2 40.375 3 40.410 3 40.418 2 40.420 7 40.422 1 3 40.403 3 40.417 4 40.420 1 40.421 1 0.1 0.1 1 48.027 5 48.102 9 48.119 0 48.119 9 2 48.027 5 48.102 9 48.119 0 48.119 9 48.123 8 3 48.027 7 48.107 0 48.116 2 48.119 7 0.34 0.44 1 41.304 1 41.453 3 41.479 8 41.480 2 2 41.304 1 41.453 3 41.479 8 41.480 2 41.487 0 3 41.286 2 41.447 3 41.479 7 41.487 8 表 2 选择点处热流分量qx2的计算结果
Table 2. Computation results for heat flux component qx2 at the selected points
x1 x2 source point type HFS-FEM ABAQUS 2×2 mesh 4×4 mesh 6×6 mesh 8×8 mesh 25×25 mesh 0.02 0.48 1 20.180 5 20.882 7 21.002 7 21.044 3 2 20.180 5 20.882 6 21.002 7 21.044 3 21.097 4 3 20.111 2 20.863 1 21.010 0 21.062 4 0.1 0.1 1 19.710 3 18.918 4 19.091 4 18.908 6 2 19.710 3 18.918 4 19.091 5 18.908 6 18.931 8 3 19.731 5 19.105 3 18.922 1 18.929 5 0.34 0.44 1 21.594 2 24.337 3 24.853 8 24.148 8 2 21.594 2 24.337 3 24.853 8 24.148 7 24.469 7 3 21.446 9 23.796 8 23.991 0 24.084 1 表 3 CPU时间的对比
Table 3. Comparation of the CPU time
method element CPU time tCPU/s HFS-FEM (type 3) 78 0.07 ABAQUS 78 0.1 300 0.2 -
[1] JIROUSEK J, LEON N. A powerful finite element for plate bending[J]. Computer Methods in Applied Mechanics & Engineering, 1977, 12(1): 77-96. [2] JIROUSEK J, VENKATESH A. Hybrid Trefftz plane elasticity elements with p-method capabilities[J]. International Journal for Numerical Methods in Engineering, 1992, 35(7): 1443-1472. doi: 10.1002/nme.1620350705 [3] QIN Q H, WANG H. MATLAB and C Programming for Trefftz Finite Element Methods[M]. Boca Raton: CRC Press, 2008. [4] WANG H, QIN Q H. Hybrid FEM with fundamental solutions as trial functions for heat conduction simulation[J]. Acta Mechanica Solida Sinica, 2009, 22(5): 487-498. doi: 10.1016/S0894-9166(09)60300-1 [5] SHE Z, WANG K Y, LI P C. Thermal analysis of multilayer coated fiber-reinforced composites by the hybrid Trefftz finite element method[J]. Composite Structures, 2019, 224: 110992. doi: 10.1016/j.compstruct.2019.110992 [6] WEISSER S. Arbitrary order Trefftz-like basis functions on polygonal meshes and realization in BEM-based FEM[J]. Computers & Mathematics With Applications, 2014, 67(7): 1390-1406. [7] ZHOU J C, WANG K Y, LI P C, MIAO X D. Hybrid fundamental solution based finite element method for axisymmetric potential problems[J]. Engineering Analysis With Boundary Elements, 2018, 91: 82-91. doi: 10.1016/j.enganabound.2018.03.009 [8] ZHOU J C, WANG K Y, LI P C. Hybrid fundamental solution based finite element method for axisymmetric potential problems with arbitrary boundary conditions[J]. Computers & Structures, 2019, 212: 72-85. [9] 秦庆华. Hybrid-Trefftz有限元法的研究进展[J]. 力学进展, 1998, 28(1): 71-82. doi: 10.3321/j.issn:1000-0992.1998.01.006QIN Qinghua. Advances in hybrid-Trefftz finite element method[J]. Advances in Mechanics, 1998, 28(1): 71-82. (in Chinese) doi: 10.3321/j.issn:1000-0992.1998.01.006 [10] 王克用, 黄争鸣, 李培超, 等. 正交各向异性轴对称位势问题的Trefftz有限元分析[J]. 应用数学和力学, 2013, 34(5): 462-469. doi: 10.3879/j.issn.1000-0887.2013.05.004WANG Keyong, HUANG Zhengming, LI Peichao, et al. Trefftz finite element analysis of axisymmetric potential problems in orthotropic media[J]. Applied Mathematics and Mechanics, 2013, 34(5): 462-469. (in Chinese) doi: 10.3879/j.issn.1000-0887.2013.05.004 [11] CAO C Y, QIN Q H, YU A B. Micromechanical Analysis of heterogeneous composites using hybrid Trefftz FEM and hybrid fundamental solution based FEM[J]. Journal of Mechanics, 2013, 29(4): 661-674. doi: 10.1017/jmech.2013.54 [12] WANG H, QIN Q H. Fundamental-solution-based finite element model for plane orthotropic elastic bodies[J]. European Journal of Mechanics A: Solids, 2010, 29(5): 801-809. doi: 10.1016/j.euromechsol.2010.05.003 [13] CAO C Y, QIN Q H. Hybrid fundamental solution based finite element method: theory and applications[J]. Advances in Mathematical Physics, 2015, 2015: 916029. [14] WANG K Y, ZHOU J C, ZENG R Y. Hybrid Trefftz finite element method for axisymmetric elasticity problems under torsion[J]. Materials Today Communications, 2021, 27: 102420. doi: 10.1016/j.mtcomm.2021.102420 [15] WANG H, LIN W, QIN Q H. Fundamental-solution-based hybrid finite element with singularity control for two-dimensional mixed-mode crack problems[J]. Engineering Analysis With Boundary Elements, 2019, 108: 267-278. doi: 10.1016/j.enganabound.2019.08.016 [16] 周枫林, 谢贵重, 张见明, 等. 角度-距离复合变换法消除边界积分方程近奇异性[J]. 应用数学和力学, 2020, 41(5): 530-540. doi: 10.21656/1000-0887.400229ZHOU Fenglin, XIE Guizhong, ZHANG Jianming, et al. Near-singularity cancellation with the angle-distance transformation method for boundary integral equations[J]. Applied Mathematics and Mechanics, 2020, 41(5): 530-540. (in Chinese) doi: 10.21656/1000-0887.400229 [17] GRABSKI J K, KARAGEORGHIS A. Moving pseudo-boundary method of fundamental solutions for nonlinear potential problems[J]. Engineering Analysis With Boundary Elements, 2019, 105: 78-86. doi: 10.1016/j.enganabound.2019.04.009 [18] GORZELAŃCZYK P, KOŁODZIEJ J A. Some remarks concerning the shape of the source contour with application of the method of fundamental solutions to elastic torsion of prismatic rods[J]. Engineering Analysis With Boundary Elements, 2008, 32(1): 64-75. doi: 10.1016/j.enganabound.2007.05.004 [19] 潘文峰, 戴海. 具有双重虚拟边界的基本解方法求解Stokes问题[J]. 中国科技论文, 2018, 13(5): 563-567. doi: 10.3969/j.issn.2095-2783.2018.05.015PAN Wenfeng, DAI Hai. Method of fundamental solutions with double fictitious boundaries for solving Stokes problems[J]. China Sciencepaper, 2018, 13(5): 563-567. (in Chinese) doi: 10.3969/j.issn.2095-2783.2018.05.015