留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于黏聚区模型的ENF试件层间裂纹扩展分析

邓健 肖鹏程 王增贤 邵光冉 卢天健

邓健,肖鹏程,王增贤,邵光冉,卢天健. 基于黏聚区模型的ENF试件层间裂纹扩展分析 [J]. 应用数学和力学,2022,43(5):515-523 doi: 10.21656/1000-0887.430082
引用本文: 邓健,肖鹏程,王增贤,邵光冉,卢天健. 基于黏聚区模型的ENF试件层间裂纹扩展分析 [J]. 应用数学和力学,2022,43(5):515-523 doi: 10.21656/1000-0887.430082
DENG Jian, XIAO Pengcheng, WANG Zengxian, SHAO Guangran, LU Tianjian. Interlaminar Crack Propagation Analysis of ENF Specimens Based on the Cohesive Zone Model[J]. Applied Mathematics and Mechanics, 2022, 43(5): 515-523. doi: 10.21656/1000-0887.430082
Citation: DENG Jian, XIAO Pengcheng, WANG Zengxian, SHAO Guangran, LU Tianjian. Interlaminar Crack Propagation Analysis of ENF Specimens Based on the Cohesive Zone Model[J]. Applied Mathematics and Mechanics, 2022, 43(5): 515-523. doi: 10.21656/1000-0887.430082

基于黏聚区模型的ENF试件层间裂纹扩展分析

doi: 10.21656/1000-0887.430082
基金项目: 国家自然科学基金(12002157;12032010;11972185);江苏高校优势学科建设工程;中央高校基本科研业务费
详细信息
    作者简介:

    邓健(1990—),男,讲师,博士,硕士生导师(E-mail:dengjian@nuaa.edu.cn

    卢天健(1964—),男,教授,博士,博士生导师(通讯作者. E-mail:tjlu@nuaa.edu.cn

  • 中图分类号: O33

Interlaminar Crack Propagation Analysis of ENF Specimens Based on the Cohesive Zone Model

  • 摘要:

    基于经典层合板理论及黏聚区模型,针对纯Ⅱ型断裂ENF试件的裂纹扩展,建立了含一般分层裂纹层合板的理论模型。相较于传统的梁理论,该文模型充分考虑了黏聚区的软化过程,引入了试件发生失效前的非线性行为,预测的失效载荷小于梁理论结果,与文献试验值更为接近。相比于梁理论(仅包含断裂韧性单一参数),该文模型可同时分析界面强度、断裂韧性及界面初始刚度对ENF试件载荷-位移曲线的影响。结果表明:界面强度主要影响试件失效前的力学行为,对裂纹扩展基本无影响,断裂韧性是影响裂纹扩展的主要参数,界面初始刚度仅影响线弹性加载段;黏聚区长度随断裂韧性增大而增大,随界面强度增大而减小;相较于断裂韧性,界面强度对黏聚区长度的影响更为明显;黏聚区尖端到达试件半长处时,黏聚区的长度呈现一定程度的减小。

  • 图  1  层合板黏聚区微元受力分析

    Figure  1.  Microelement stress analysis of the cohesive zone of the laminates

    图  2  黏聚区双线性本构模型

    Figure  2.  The bilinear constitutive model for the cohesive zone

    图  3  ENF试件几何尺寸及加载情况

    Figure  3.  The ENF specimen geometry and loading conditions

    图  4  ENF试件加载软化阶段

    Figure  4.  The loading softening stage of the ENF specimen

    图  5  本文模型与实验结果[16]及梁理论预测的对比

    Figure  5.  Comparison of the proposed model with the experimental results[16] and the beam theory prediction

    图  6  界面强度对ENF试件载荷-位移曲线的影响

    Figure  6.  Influences of the interfacial strength on load-displacement curves of the ENF specimen

    图  7  断裂韧性对ENF试件载荷-位移曲线的影响

    Figure  7.  Influences of the fracture toughness on load-displacement curves of the ENF specimen

    图  8  Ⅱ型界面初始刚度的影响:(a)载荷-位移曲线;(b)Ⅱ型裂纹T-S本构关系

    Figure  8.  Influences of the initial stiffness of the mode Ⅱ interfaces: (a) load-displacement curves; (b) T-S constitutive relationships of the mode Ⅱ crack

    图  9  Ⅱ型裂纹黏聚区长度随裂纹扩展的变化趋势

    Figure  9.  Variation tendencies of the cohesive zone length of the mode Ⅱ crack with the crack growth

    图  10  界面参数对Ⅱ型裂纹黏聚区长度的影响

    Figure  10.  Influences of interface parameters on the cohesive zone length of the mode Ⅱ crack

    表  1  ENF试件材料力学性能参数[16]

    Table  1.   Mechanical properties of the ENF specimen[16]

    mechanical properties of the HTA6376/C composite single layer plate
    $ {E_{11}} $=120 GPa${E_{22}} = {E_{33}}$=10.5 GPa$ {G_{12}} = {G_{13}} $=5.25 GPa$ {G_{23}} $= 3.48 GPa${\nu _{12}} = {\nu _{13}}$=0.3${\nu _{23}}$=0.51
    fracture properties of the interfacial cohesive zone
    $ {G_{{\text{Ic}}}} $=0.26 N/mmGⅡc=1.002 N/mm$ {\sigma _{\text{c}}} $=30 MPa$ {\tau _{\text{c}}} $=60 MPa$ K_{\rm{nn}}^{{\text{initial}}} $=1 × 103 GPa/mm$ K_{\rm{ss}}^{{\text{initial}}} $=1 × 103 GPa/mm
    下载: 导出CSV

    表  2  ENF试件几何尺寸[16]

    Table  2.   Geometric dimensions of the ENF specimen[16]

    specimen effective length 2L / mmspecimen width $b$ / mmspecimen thickness $2h$ / mminitial crack length ${a_0}$ / mm
    100203.135
    下载: 导出CSV
  • [1] 赵丽滨, 龚愉, 张建宇. 纤维增强复合材料层合板分层扩展行为研究进展[J]. 航空学报, 2019, 40(1): 522509. (ZHAO Libin, GONG Yu, ZHANG Jianyu. A survey on delamination growth behavior in fiber reinforced composite laminates[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1): 522509.(in Chinese)
    [2] 姚辽军, 赵美英, 万小朋. 基于CDM-CZM的复合材料补片补强参数分析[J]. 航空学报, 2012, 33(4): 666-671. (YAO Liaojun, ZHAO Meiying, WAN Xiaopeng. Parameter analysis of composite laminates with patched reinforcement based on CDM-CZM[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(4): 666-671.(in Chinese)
    [3] BENNATI S, FISICARO P, VALVO P S. An enhanced beam-theory model of the mixed-mode bending (MMB) test, part Ⅰ: literature review and mechanical model[J]. Meccanica, 2013, 48(2): 443-462. doi: 10.1007/s11012-012-9686-3
    [4] BENNATI S, FISICARO P, VALVO P S. An enhanced beam-theory model of the mixed-mode bending (MMB) test, part Ⅱ: applications and results[J]. Meccanica, 2013, 48(2): 465-484. doi: 10.1007/s11012-012-9682-7
    [5] HASHEMI S, KINLOCH A, WILLIAMS J. The analysis of interlaminar fracture in uniaxial fibre-polymer composites[J]. Proceedings of the Royal Society of London, 1990, 427(1872): 173-199.
    [6] CARLSSON L, GILLESPIE J, PIPES R. On the analysis and design of the end notched flexure (ENF) specimen for mode Ⅱ testing[J]. Journal of Composite Materials, 1986, 20(6): 594-604. doi: 10.1177/002199838602000606
    [7] FAN C, JAR P, CHENG J. Revisit the analysis of end-notched-flexure (ENF) specimen[J]. Composites Science and Technology, 2006, 66(10): 1497-1498. doi: 10.1016/j.compscitech.2006.01.016
    [8] VALVO P S. Does shear deformability influence the mode Ⅱ delamination of laminated beams?[C]//17th European Conference on Fracture(ECF17). 2008.
    [9] WHITNEY J, GILLESPIE J, CARLSSON L. Singularity approach to the analysis of the end notch flexure specimen[C]//American Society for Composites Second Technical Conference. 1987: 391-398.
    [10] WHITNEY J. Analysis of interlaminar mode Ⅱ bending specimens using a higher order beam theory[J]. Journal of Reinforced Plastics and Composites, 1990, 9(6): 522-536. doi: 10.1177/073168449000900601
    [11] WILLIAMS J. End corrections for orthotropic DCB specimens[J]. Composites Science and Technology, 1989, 35(4): 367-376. doi: 10.1016/0266-3538(89)90058-4
    [12] 陈瑛, 乔丕忠. 4ENF黏聚解析模型分析[J]. 河海大学学报(自然科学版), 2008, 36(2): 234-237. (CHEN Ying, QIAO Pizhong. Cohesive analytic model of 4ENF specimen[J]. Journal of Hohai University (Natural Sciences), 2008, 36(2): 234-237.(in Chinese)
    [13] 刘伟先, 周光明, 王新峰. 复合材料ENF试件裂纹扩展理论分析[J]. 航空学报, 2014, 35(1): 187-194. (LIU Weixian, ZHOU Guangming, WANG Xinfeng. Theoretical analysis of crack propagation of composite ENF specimens[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1): 187-194.(in Chinese)
    [14] REDDY J. Mechanics of Laminated Composite Plates and Shells: Theory and Analysis[M]. CRC Press, 2004.
    [15] PARK K, PAULINO G. Cohesive zone models: a critical review of traction-separation relationships across fracture surfaces[J]. Applied Mechanics Reviews, 2011, 64(6): 060802. doi: 10.1115/1.4023110
    [16] HARPER P, HALLETT S. Cohesive zone length in numerical simulations of composite delamination[J]. Engineering Fracture Mechanics, 2008, 75(16): 4774-4792. doi: 10.1016/j.engfracmech.2008.06.004
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  638
  • HTML全文浏览量:  252
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-14
  • 录用日期:  2022-03-24
  • 修回日期:  2022-03-24
  • 网络出版日期:  2022-04-13
  • 刊出日期:  2022-05-01

目录

    /

    返回文章
    返回