留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

封闭腔体排液孔的流量系数研究

胡仁强 张涛 卢柳韵 许常悦

胡仁强,张涛,卢柳韵,许常悦. 封闭腔体排液孔的流量系数研究 [J]. 应用数学和力学,2023,44(1):61-69 doi: 10.21656/1000-0887.430100
引用本文: 胡仁强,张涛,卢柳韵,许常悦. 封闭腔体排液孔的流量系数研究 [J]. 应用数学和力学,2023,44(1):61-69 doi: 10.21656/1000-0887.430100
HU Renqiang, ZHANG Tao, LU Liuyun, XU Changyue. Study on Discharge Coefficients of Drain Orifices in Closed Cavities[J]. Applied Mathematics and Mechanics, 2023, 44(1): 61-69. doi: 10.21656/1000-0887.430100
Citation: HU Renqiang, ZHANG Tao, LU Liuyun, XU Changyue. Study on Discharge Coefficients of Drain Orifices in Closed Cavities[J]. Applied Mathematics and Mechanics, 2023, 44(1): 61-69. doi: 10.21656/1000-0887.430100

封闭腔体排液孔的流量系数研究

doi: 10.21656/1000-0887.430100
基金项目: 国家自然科学基金(12172172);江苏高校优势学科建设工程
详细信息
    作者简介:

    胡仁强(1998—),男,硕士(E-mail:1473378062@qq.com

    许常悦(1981—),男,副教授,博士,硕士生导师(通讯作者. E-mail:cyxu@nuaa.edu.cn

  • 中图分类号: O35

Study on Discharge Coefficients of Drain Orifices in Closed Cavities

  • 摘要:

    该文利用数值方法模拟了封闭腔体的排液流动,获取了排液孔的流量系数。通过量纲分析法研究了小孔流量系数的主要影响因素,拟合了计算小孔流量系数的经验公式。结果表明:当水头高度小于200 mm时,小孔流量系数随水头高度的增加而减小;当水头高度大于200 mm时,小孔流量系数稳定在0.61附近。不同厚径比的小孔流量系数表现为两种不同的形式:小厚径比的小孔呈现薄孔流动特性,流量系数为0.6左右;大厚径比的小孔呈现厚孔流动特性,流量系数为0.8左右。

  • 图  1  封闭腔体简化模型及排液孔局部的网格拓扑结构

    Figure  1.  The simplified model for the closed cavity and the mesh topology of the drain orifice

    图  2  网格无关性验证结果

    Figure  2.  Grid independence verification results

    图  3  小孔流量系数随孔厚度的变化

    Figure  3.  Evolution of the discharge coefficient with the orifice thickness

    图  4  小孔流量系数随水头高度的变化

    Figure  4.  Evolution of the discharge coefficient with the head height

    图  5  小孔流量系数随水力直径的变化

    Figure  5.  Evolution of the discharge coefficient with the hydraulic diameter

    图  6  $h/d \geqslant 40$时小孔流量系数随厚径比$l/d$和Reynolds数$Re$的变化:(a) 厚径比l/d;(b) Re

    Figure  6.  Evolution of the discharge coefficient with thickness to diameter ratio $l/d$ and Reynolds number $Re$ for $h/d \geqslant 40$: (a) thickness to diameter ratio l/d;(b) Re

    图  7  利用流线和压力云图描述的小孔附近流动拓扑结构:(a) l/d=0.4;(b) l/d=2

    注 为了解释图中的颜色,读者可以参考本文的电子网页版本。

    Figure  7.  The flow topology near the orifice of plotted streamlines and contours of pressure: (a) l/d=0.4; (b) l/d=2

    图  8  涡量厚度沿分离剪切层的分布

    Figure  8.  Distribution of the vorticity thickness along the separated shear layer

    表  1  圆形排液孔的几何参数

    Table  1.   Geometric parameters of circular drain orifices

    d/mml/mml/d
    52, 5, 10, 15, 200.4, 1, 2, 3, 4
    102, 5, 10, 15, 200.2, 0.5, 1, 1.5, 2
    152, 5, 10, 15, 200.13, 0.3, 0.67, 1, 1.3
    202, 5, 10, 15, 200.1, 0.25, 0.5, 0.75, 1
    下载: 导出CSV

    表  2  数值与试验结果对比

    Table  2.   Comparison of numerical and experimental results

    d/mmh/mmexp[19]num
    102820.7240.746
    12.52670.6620.655
    13.53020.6510.662
    163700.6330.643
    下载: 导出CSV
  • [1] 聂俊领. 旋转条件下小孔流量系数试验研究与数值分析[D]. 硕士学位论文. 南京: 南京航空航天大学, 2014.

    NIE Junling. Experimental study and numerical analysis on the discharge coefficient of rotating orifice[D]. Master Thesis. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014. (in Chinese)
    [2] 吴进军, 常国强, 钱鑫. 鳞片孔形状对冷却效率及流量系数的影响[J]. 现代机械, 2020(1): 64-68

    WU Jinjun, CHANG Guoqiang, QIAN Xin. Effect of scale hole shape on film cooling efficiency and flow coefficient[J]. Modern Machinery, 2020(1): 64-68.(in Chinese)
    [3] DING Y W, WEI X H, NIE H, et al. Discharge coefficient calculation method of landing gear shock absorber and its influence on drop dynamics[J]. Journal of Vibroengineering, 2018, 20(7): 2550-2562. doi: 10.21595/jve.2018.19049
    [4] 曹睿, 刘艳升, 严超宇, 等. 垂直锐边孔口的自由出流特性(Ⅰ):流动状态和孔结构参数对孔流系数的影响[J]. 化工学报, 2008, 59(9): 2175-2180 doi: 10.3321/j.issn:0438-1157.2008.09.004

    CAO Rui, LIU Yansheng, YAN Chaoyu, et al. Characteristics of vertical sharp-edged orifice discharge (Ⅰ): effect of flow regime and configuration parameters on orifice discharge coefficient[J]. Journal of Chemical Industry and Engineering, 2008, 59(9): 2175-2180.(in Chinese) doi: 10.3321/j.issn:0438-1157.2008.09.004
    [5] 郭成富, 王秀兰, 王勇. 倒(圆)角进口圆孔流量系数的试验研究[J]. 燃气涡轮试验与研究, 1997(4): 10-15

    GUO Chengfu, WANG Xiulan, WANG Yong. Experimental study on discharge coefficient of round orifice at chamfered inlet[J]. Gas Turbine Experiment and Research, 1997(4): 10-15.(in Chinese)
    [6] 史维祥, 葛思华. 小孔流量试验研究[J]. 西安交通大学学报, 1966(1): 58-65.

    SHI Weixiang, GE Sihua. Experimental study on small orifice flow[J] Journal of Xi’an Jiaotong University, 1966(1): 58-65. (in Chinese)
    [7] WEBSTER G K, COLL G T, KANDULA M, et al. Compressibility effects on the discharge coefficient of small diameter ratio sharp-edged orifices with and without downstream chamfer[C]//AIAA Aviation 2019 Forum. Dallas, Texas, USA, 2019.
    [8] CHISHOLM D. Two-Phase Flow in Pipelines and Heat Ex-Changers[M]. London: The Institution of Chemical Engineers, 1983.
    [9] LICHTAROWICZ A, DUGGINS R K, MARKLAND E. Discharge coefficients for incompressible noncavitating flow through long orifices[J]. Journal of Mechanical Engineering Science, 2006, 7(2): 210-219.
    [10] ABD H M, ALOMAR O R, MOHAMED I A. Effects of varying orifice diameter and Reynolds number on discharge coefficient and wall pressure[J]. Flow Measurement and Instrumentation, 2019, 65: 219-226. doi: 10.1016/j.flowmeasinst.2019.01.004
    [11] FU Z F, CUI Z, DAI W H, et al. Discharge coefficient of combined orifice-weir flow[J]. Water, 2018, 10(6): 699-716. doi: 10.3390/w10060699
    [12] EGHBALZADEH A, JAVAN M, HAYATI M. Discharge prediction of circular and rectangular side orifices using artificial neural networks[J]. KSCE Journal of Civil Engineering, 2016, 20(2): 990-996. doi: 10.1007/s12205-015-0440-y
    [13] WERTH D E, KHAN A A, GREGG W B. Experimental study of wall curvature and bypass flow effects on orifice discharge coefficients[J]. Experiments in Fluids, 2005, 39(3): 485-491. doi: 10.1007/s00348-005-0939-y
    [14] 黄一帆, 娄钦. T型微通道内的幂律流体液滴破裂行为的格子Boltzmann方法模拟[J]. 应用数学和力学, 2020, 41(10): 1125-1145

    HUANG Yifan, LOU Qin. Power-law fluid droplet dynamic behaviors in T-junction micro-channels with the lattice Boltzmann method[J]. Applied Mathematics and Mechanics, 2020, 41(10): 1125-1145.(in Chinese)
    [15] 王金城, 关晖, 卫志军, 等. 壁面结构对三维可压缩气泡群影响的数值模拟研究[J]. 应用数学和力学, 2022, 43(1): 49-62

    WANG Jincheng, GUAN Hui, WEI Zhijun, et al. Numerical analysis on effects of wall structures on bubble groups[J]. Applied Mathematics and Mechanics, 2022, 43(1): 49-62.(in Chinese)
    [16] 尹强, 齐晓霓, 梁伟. 二元海水液滴对心碰撞过程数值模拟[J]. 应用数学和力学, 2020, 41(3): 268-279

    YIN Qiang, QI Xiaoni, LIANG Wei. Numerical simulation of head-on binary collision between seawater droplets[J]. Applied Mathematics and Mechanics, 2020, 41(3): 268-279.(in Chinese)
    [17] SHIH T H, LIOU W W, SHABBIR A, et al. A new k-ɛ eddy viscosity model for high Reynolds number turbulent flows[J]. Computers & Fluids, 1995, 24(3): 227-238.
    [18] 金朝铭. 液压流体力学[M]. 北京: 国防工业出版社, 1994.

    JIN Chaoming. Hydraulic Fluid Mechanics[M]. Beijing: National Defense Industry Press, 1994. (in Chinese)
    [19] JAN C D, NGUYEN Q T. Discharge coefficient for a water flow through a bottom orifice of a conical hopper[J]. Journal of Irrigation & Drainage Engineering, 2010, 136(8): 567-572.
    [20] 王哲. GJB5431—2005《飞机结构防水和排水设计要求》研究[J]. 航空标准化与质量, 2013(2): 41-42 doi: 10.3969/j.issn.1003-6660.2013.02.012

    WANG Zhe. GJB5431—2005 Study on Design Requirements for Waterproof and Drainage of Aircraft Structures[J]. Aeronautic Standardization & Quality, 2013(2): 41-42.(in Chinese) doi: 10.3969/j.issn.1003-6660.2013.02.012
    [21] 许常悦, 郑静, 王哲, 等. 方柱跨声速流动中的剪切层和尾迹特性[J]. 上海交通大学学报, 2021, 55(4): 403-411

    XU Changyue, ZHENG Jing, WANG Zhe, et al. Shear layer and wake characteristics of square cylinder in transonic flow[J]. Journal of Shanghai Jiaotong University, 2021, 55(4): 403-411.(in Chinese)
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  564
  • HTML全文浏览量:  313
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-28
  • 修回日期:  2022-08-27
  • 网络出版日期:  2023-01-09
  • 刊出日期:  2023-01-01

目录

    /

    返回文章
    返回