留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带有外部输入项的时间周期SIR传染病模型的周期行波解

宋雪 杨赟瑞 杨璐

宋雪,杨赟瑞,杨璐. 带有外部输入项的时间周期SIR传染病模型的周期行波解 [J]. 应用数学和力学,2022,43(10):1164-1176 doi: 10.21656/1000-0887.430108
引用本文: 宋雪,杨赟瑞,杨璐. 带有外部输入项的时间周期SIR传染病模型的周期行波解 [J]. 应用数学和力学,2022,43(10):1164-1176 doi: 10.21656/1000-0887.430108
SONG Xue, YANG Yunrui, YANG Lu. Periodic Traveling Wave Solutions of Time-Periodic SIR Epidemic Models With External Supplies[J]. Applied Mathematics and Mechanics, 2022, 43(10): 1164-1176. doi: 10.21656/1000-0887.430108
Citation: SONG Xue, YANG Yunrui, YANG Lu. Periodic Traveling Wave Solutions of Time-Periodic SIR Epidemic Models With External Supplies[J]. Applied Mathematics and Mechanics, 2022, 43(10): 1164-1176. doi: 10.21656/1000-0887.430108

带有外部输入项的时间周期SIR传染病模型的周期行波解

doi: 10.21656/1000-0887.430108
基金项目: 国家自然科学基金(11761046);甘肃省自然科学基金(20JR5RA411)
详细信息
    作者简介:

    宋雪(1997—),女,硕士生(E-mail:sx18604126839@163.com

    杨赟瑞(1979—),女,教授,博士,硕士生导师(通讯作者. E-mail:lily1979101@163.com

    杨璐(1997—),女,硕士生(E-mail:yanglu19970729@163.com

  • 中图分类号: O175.14

Periodic Traveling Wave Solutions of Time-Periodic SIR Epidemic Models With External Supplies

  • 摘要:

    研究了一类带有外部输入项的时间周期SIR传染病模型周期行波解的存在性和不存在性。首先,通过构造辅助系统适当的上下解并定义闭凸锥,将周期行波解的存在性转化为定义在这个闭凸锥上的非单调算子的不动点问题,利用Schauder不动点定理建立辅助系统周期解的存在性,并利用Arzela-Ascoli定理证明了原模型周期行波解的存在性。其次,借助分析技术得到了周期行波解的不存在性。

  • [1] BRITTON N F. Reaction-Diffusion Equations and Their Applications to Biology[M]. San Diego: Academic Press, 1986.
    [2] 张秋. 一类具有非线性发生率与时滞的非局部扩散SIR模型的临界波的存在性[J]. 应用数学和力学, 2019, 40(7): 713-727

    ZHANG Qiu. Existence of critical traveling waves for nonlocal dispersal SIR models with delay and nonlinear incidence[J]. Applied Mathematics and Mechanics, 2019, 40(7): 713-727.(in Chinese)
    [3] 张笑嫣. 一类具有非线性发生率与时滞的离散扩散SIR模型临界行波解的存在性[J]. 应用数学和力学, 2021, 42(12): 1317-1326

    ZHANG Xiaoyan. Existence of critical traveling wave solutions for a class of discrete diffusion SIR models with nonlinear incidence and time delay[J]. Applied Mathematics and Mechanics, 2021, 42(12): 1317-1326.(in Chinese)
    [4] WANG X S, WANG H Y, WU J. Traveling waves of diffusive predator-prey systems: disease outbreak propagation[J]. Discrete and Continuous Dynamical Systems, 2012, 32(9): 3303-3324. doi: 10.3934/dcds.2012.32.3303
    [5] WANG H Y, WANG X S. Travelling wave phenomena in a Kermack-McKendrick SIR model[J]. Journal of Dynamics and Differential Equations, 2016, 28(1): 143-166. doi: 10.1007/s10884-015-9506-2
    [6] ZHANG T R, WANG W D, WANG K F. Minimal wave speed for a class of non-cooperative diffusion-reaction system[J]. Journal of Differential Equations, 2016, 260(3): 2763-2791. doi: 10.1016/j.jde.2015.10.017
    [7] WANG Z C, ZHANG L, ZHAO X Q. Time periodic traveling waves for a periodic and diffusive SIR epidemic model[J]. Journal of Dynamics and Differential Equations, 2018, 30(1): 379-403. doi: 10.1007/s10884-016-9546-2
    [8] WU W X, TENG Z D. The periodic traveling waves in a diffusive periodic SIR epidemic model with nonlinear incidence[J]. Chaos, Solitons and Fractals, 2021, 144: 110683. doi: 10.1016/j.chaos.2021.110683
    [9] ZHAO G Y, RUAN S G. Existence, uniqueness and asymptotic stability of time periodic traveling waves for a periodic Lotka-Volterra competition system with diffusion[J]. Journal de Mathematiques Pures et Appliquees, 2011, 95(6): 627-671. doi: 10.1016/j.matpur.2010.11.005
    [10] BAO X X, WANG Z C. Existence and stability of time periodic traveling waves for a periodic bistable Lotka-Volterra competition system[J]. Journal of Differential Equations, 2013, 255(8): 2402-2435. doi: 10.1016/j.jde.2013.06.024
    [11] SHEN W X. Traveling waves in time periodic lattice differential equations[J]. Nonlinear Analysis: Methods and Applications, 2003, 54(2): 319-339. doi: 10.1016/S0362-546X(03)00065-8
    [12] 谷雨萌, 黄明迪. 一类时间周期的时滞竞争系统行波解的存在性[J]. 应用数学和力学, 2020, 41(6): 658-668

    GU Yumeng, HUANG Mingdi. Existence of traveling wave solutions of a time-period time-delay competitive system[J]. Applied Mathematics and Mechanics, 2020, 41(6): 658-668.(in Chinese)
    [13] ZHANG L, WANG Z C, ZHAO X Q. Time periodic traveling wave solutions for a Kermack-McKendrick epidemic model with diffusion and seasonality[J]. Journal of Evolution Equations, 2020, 20(3): 1029-1059. doi: 10.1007/s00028-019-00544-2
    [14] HETHCOTE H. Qualitative analyses of communicable disease models[J]. Mathematical Biosciences, 1976, 28(3/4): 335-356.
    [15] COOKE K. Stability analysis for a vector disease model[J]. Rocky Mountain Journal of Mathematics, 1979, 9(1): 31-42.
    [16] ZHOU K, HAN M A, WANG Q R. Traveling wave solutions for a delayed diffusive SIR epidemic model with nonlinear incidence rate and external supplies[J]. Mathematical Methods in the Applied Sciences, 2017, 40(7): 2772-2783. doi: 10.1002/mma.4197
    [17] WANG Z C, LI W T, RUAN S G. Travelling wave fronts in reaction-diffusion systems with spatio-temporal delays[J]. Journal of Differential Equations, 2006, 222(1): 185-232. doi: 10.1016/j.jde.2005.08.010
    [18] FANG J, ZHAO X Q. Traveling waves for monotone semiflows with weak compactness[J]. SIAM Journal on Mathematical Analysis, 2014, 46(6): 3678-3704. doi: 10.1137/140953939
    [19] TENG Z, LIU Y, ZHANG L. Persistence and extinction of disease in non-autonomous SIRS epidemic models with disease-induced mortality[J]. Nonlinear Analysis: Theory, Methods and Applications, 2008, 69(8): 2599-2614. doi: 10.1016/j.na.2007.08.036
    [20] KOCH-MEDINA P, DANERS D. Abstract Evolution Equations, Periodic Problems and Applications[M]. Longman Scientific Technical, 1992.
    [21] LUNARDI A. Analytic Semigroups and Optimal Regularity in Parabolic Problems[M]. Boston: Birkhauser, 1995.
    [22] BARNETT N, DRAGOMIR S. Some Landau type inequalities for functions whose derivatives are of locally bounded variation[J]. Tamkang Journal of Mathematics, 2006, 37(4): 301-308. doi: 10.5556/j.tkjm.37.2006.144
  • 加载中
计量
  • 文章访问数:  577
  • HTML全文浏览量:  229
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-30
  • 录用日期:  2022-06-24
  • 修回日期:  2022-06-24
  • 网络出版日期:  2022-08-31
  • 刊出日期:  2022-10-31

目录

    /

    返回文章
    返回