Periodic Traveling Wave Solutions of Time-Periodic SIR Epidemic Models With External Supplies
-
摘要:
研究了一类带有外部输入项的时间周期SIR传染病模型周期行波解的存在性和不存在性。首先,通过构造辅助系统适当的上下解并定义闭凸锥,将周期行波解的存在性转化为定义在这个闭凸锥上的非单调算子的不动点问题,利用Schauder不动点定理建立辅助系统周期解的存在性,并利用Arzela-Ascoli定理证明了原模型周期行波解的存在性。其次,借助分析技术得到了周期行波解的不存在性。
Abstract:The existence and non-existence of periodic traveling wave solutions of a class of time-periodic SIR epidemic models with external supplies were considered. Firstly, the appropriate upper and lower solutions of the auxiliary system were built and a closed convex cone was defined, the existence of periodic traveling waves was transformed into a fixed-point problem of the non-monotonic operator defined on the closed convex cone. The existence of periodic solutions of the auxiliary system was established under the Schauder fixed-point theorem, and the Arzela-Ascoli theorem was used to prove the existence of periodic traveling waves for the original model. Secondly, the non-existence of periodic traveling waves was obtained by analytic techniques.
-
Key words:
- periodic traveling wave solution /
- existence /
- auxiliary system /
- fixed-point theorem
-
[1] BRITTON N F. Reaction-Diffusion Equations and Their Applications to Biology[M]. San Diego: Academic Press, 1986. [2] 张秋. 一类具有非线性发生率与时滞的非局部扩散SIR模型的临界波的存在性[J]. 应用数学和力学, 2019, 40(7): 713-727ZHANG Qiu. Existence of critical traveling waves for nonlocal dispersal SIR models with delay and nonlinear incidence[J]. Applied Mathematics and Mechanics, 2019, 40(7): 713-727.(in Chinese) [3] 张笑嫣. 一类具有非线性发生率与时滞的离散扩散SIR模型临界行波解的存在性[J]. 应用数学和力学, 2021, 42(12): 1317-1326ZHANG Xiaoyan. Existence of critical traveling wave solutions for a class of discrete diffusion SIR models with nonlinear incidence and time delay[J]. Applied Mathematics and Mechanics, 2021, 42(12): 1317-1326.(in Chinese) [4] WANG X S, WANG H Y, WU J. Traveling waves of diffusive predator-prey systems: disease outbreak propagation[J]. Discrete and Continuous Dynamical Systems, 2012, 32(9): 3303-3324. doi: 10.3934/dcds.2012.32.3303 [5] WANG H Y, WANG X S. Travelling wave phenomena in a Kermack-McKendrick SIR model[J]. Journal of Dynamics and Differential Equations, 2016, 28(1): 143-166. doi: 10.1007/s10884-015-9506-2 [6] ZHANG T R, WANG W D, WANG K F. Minimal wave speed for a class of non-cooperative diffusion-reaction system[J]. Journal of Differential Equations, 2016, 260(3): 2763-2791. doi: 10.1016/j.jde.2015.10.017 [7] WANG Z C, ZHANG L, ZHAO X Q. Time periodic traveling waves for a periodic and diffusive SIR epidemic model[J]. Journal of Dynamics and Differential Equations, 2018, 30(1): 379-403. doi: 10.1007/s10884-016-9546-2 [8] WU W X, TENG Z D. The periodic traveling waves in a diffusive periodic SIR epidemic model with nonlinear incidence[J]. Chaos, Solitons and Fractals, 2021, 144: 110683. doi: 10.1016/j.chaos.2021.110683 [9] ZHAO G Y, RUAN S G. Existence, uniqueness and asymptotic stability of time periodic traveling waves for a periodic Lotka-Volterra competition system with diffusion[J]. Journal de Mathematiques Pures et Appliquees, 2011, 95(6): 627-671. doi: 10.1016/j.matpur.2010.11.005 [10] BAO X X, WANG Z C. Existence and stability of time periodic traveling waves for a periodic bistable Lotka-Volterra competition system[J]. Journal of Differential Equations, 2013, 255(8): 2402-2435. doi: 10.1016/j.jde.2013.06.024 [11] SHEN W X. Traveling waves in time periodic lattice differential equations[J]. Nonlinear Analysis: Methods and Applications, 2003, 54(2): 319-339. doi: 10.1016/S0362-546X(03)00065-8 [12] 谷雨萌, 黄明迪. 一类时间周期的时滞竞争系统行波解的存在性[J]. 应用数学和力学, 2020, 41(6): 658-668GU Yumeng, HUANG Mingdi. Existence of traveling wave solutions of a time-period time-delay competitive system[J]. Applied Mathematics and Mechanics, 2020, 41(6): 658-668.(in Chinese) [13] ZHANG L, WANG Z C, ZHAO X Q. Time periodic traveling wave solutions for a Kermack-McKendrick epidemic model with diffusion and seasonality[J]. Journal of Evolution Equations, 2020, 20(3): 1029-1059. doi: 10.1007/s00028-019-00544-2 [14] HETHCOTE H. Qualitative analyses of communicable disease models[J]. Mathematical Biosciences, 1976, 28(3/4): 335-356. [15] COOKE K. Stability analysis for a vector disease model[J]. Rocky Mountain Journal of Mathematics, 1979, 9(1): 31-42. [16] ZHOU K, HAN M A, WANG Q R. Traveling wave solutions for a delayed diffusive SIR epidemic model with nonlinear incidence rate and external supplies[J]. Mathematical Methods in the Applied Sciences, 2017, 40(7): 2772-2783. doi: 10.1002/mma.4197 [17] WANG Z C, LI W T, RUAN S G. Travelling wave fronts in reaction-diffusion systems with spatio-temporal delays[J]. Journal of Differential Equations, 2006, 222(1): 185-232. doi: 10.1016/j.jde.2005.08.010 [18] FANG J, ZHAO X Q. Traveling waves for monotone semiflows with weak compactness[J]. SIAM Journal on Mathematical Analysis, 2014, 46(6): 3678-3704. doi: 10.1137/140953939 [19] TENG Z, LIU Y, ZHANG L. Persistence and extinction of disease in non-autonomous SIRS epidemic models with disease-induced mortality[J]. Nonlinear Analysis: Theory, Methods and Applications, 2008, 69(8): 2599-2614. doi: 10.1016/j.na.2007.08.036 [20] KOCH-MEDINA P, DANERS D. Abstract Evolution Equations, Periodic Problems and Applications[M]. Longman Scientific Technical, 1992. [21] LUNARDI A. Analytic Semigroups and Optimal Regularity in Parabolic Problems[M]. Boston: Birkhauser, 1995. [22] BARNETT N, DRAGOMIR S. Some Landau type inequalities for functions whose derivatives are of locally bounded variation[J]. Tamkang Journal of Mathematics, 2006, 37(4): 301-308. doi: 10.5556/j.tkjm.37.2006.144
计量
- 文章访问数: 577
- HTML全文浏览量: 229
- PDF下载量: 66
- 被引次数: 0