留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一维六方压电准晶双材料界面共线裂纹问题

卢绍楠 赵雪芬 马园园

卢绍楠, 赵雪芬, 马园园. 一维六方压电准晶双材料界面共线裂纹问题[J]. 应用数学和力学, 2023, 44(7): 809-824. doi: 10.21656/1000-0887.430111
引用本文: 卢绍楠, 赵雪芬, 马园园. 一维六方压电准晶双材料界面共线裂纹问题[J]. 应用数学和力学, 2023, 44(7): 809-824. doi: 10.21656/1000-0887.430111
LU Shaonan, ZHAO Xuefen, MA Yuanyuan. Research on Interfacial Collinear Cracks Between 1D Hexagonal Piezoelectric Quasicrystal Bimaterials[J]. Applied Mathematics and Mechanics, 2023, 44(7): 809-824. doi: 10.21656/1000-0887.430111
Citation: LU Shaonan, ZHAO Xuefen, MA Yuanyuan. Research on Interfacial Collinear Cracks Between 1D Hexagonal Piezoelectric Quasicrystal Bimaterials[J]. Applied Mathematics and Mechanics, 2023, 44(7): 809-824. doi: 10.21656/1000-0887.430111

一维六方压电准晶双材料界面共线裂纹问题

doi: 10.21656/1000-0887.430111
基金项目: 

国家自然科学基金项目 12062021

宁夏自然科学基金项目 2022AAC03013

详细信息
    作者简介:

    卢绍楠(2000—), 女, 硕士生(E-mail: 1936136502@qq.com)

    通讯作者:

    赵雪芬(1983—), 女, 副教授, 博士, 硕士生导师(通讯作者. E-mail: snownfen@163.com)

  • 中图分类号: O343.8

Research on Interfacial Collinear Cracks Between 1D Hexagonal Piezoelectric Quasicrystal Bimaterials

  • 摘要: 利用复变函数理论中的解析延拓、奇性主部分析和推广的Liouville定理, 求解了一维六方压电准晶双材料在集中载荷作用下界面共线裂纹反平面弹性问题. 导出了含有一条和两条有限长界面裂纹的封闭解, 同时给出了裂纹尖端场强度因子(包含声子场和相位子场应力强度因子和电位移强度因子)的表达式. 数值算例分析了外荷载与耦合系数之比对裂纹尖端场强度因子变化规律的影响. 从数值结果中可以看出, 当裂纹长度增加时,裂纹尖端场强度因子随之增加; 应力强度因子随双材料耦合系数之比的增大而增大, 电位移强度因子几乎不变; 不同载荷作用下,裂纹尖端场强度因子随着裂纹长度改变时的变化趋势也不尽相同. 研究结果可为压电准晶双材料的设计和制备提供一定的理论参考.
  • 图  1  集中载荷作用于含共线界面裂纹的一维六方压电准晶双材料

    Figure  1.  A 1D hexagonal piezoelectric quasicrystal bimaterial with collinear interfacial cracks under a concentrated load

    图  2  集中载荷作用在含一条界面裂纹的压电准晶双材料

    Figure  2.  A piezoelectric quasicrystal bimaterial with an interfacial crack subjected to a concentrated load

    图  3  集中载荷作用在含两条界面裂纹的压电准晶双材料

    Figure  3.  A piezoelectric quasicrystal bimaterial with 2 interfacial cracks subjected to a concentrated load

    图  4  单个界面裂纹面上受集中载荷

    Figure  4.  single interfacial crack surface subjected to a concentrated load

    图  5  单个界面裂纹面上受均布集中载荷

    Figure  5.  A single interfacial crack surface subjected to uniformly distributed concentrated loads

    图  6  集中载荷作用在界面裂纹面

    Figure  6.  A concentrated load applied to the interface crack surface

    图  7  R3(2)/R3(1)不同时, Kσl变化

    Figure  7.  The variation of Kσ with l for different R3(2)/R3(1) values

    图  8  R3(2)/R3(1)不同时, KHl变化

    Figure  8.  The variation of KH with l for different R3(2)/R3(1) values

    图  9  R3(2)/R3(1)不同时, KDl变化

    Figure  9.  The variation of KDwith l for different R3(2)/R3(1) values

    图  10  P1不同时, Kσl变化

    Figure  10.  The variation of Kσ with l for different P1 values

    图  11  P1不同时, KHl变化

    Figure  11.  The variation of KH with l for different P1 values

    图  12  P1不同时, KDl变化

    Figure  12.  The variation of KD with l for different P1 values

    图  13  P2不同时, Kσl变化

    Figure  13.  The variation of Kσ with l for different P2 values

    图  14  P2不同时, KHl变化

    Figure  14.  The variation of KH with l for different P2 values

    图  15  P2不同时, KDl变化

    Figure  15.  The variation of KD with l for different P2 values

    图  16  Q不同时, Kσl变化

    Figure  16.  The variation of Kσ with l for different Q values

    图  17  Q不同时, KHl变化

    Figure  17.  The variation of KH with l for different Q values

    图  18  Q不同时, KDl变化

    Figure  18.  The variation of KD with l for different Q values

    表  1  一维六方压电准晶双材料弹性常数

    Table  1.   Elastic constants of 1D hexagonal piezoelectric quasicrystals

    material C44/GPa K2/GPa R3/GPa e151/(C·m-2) e152/(C·m-2) $ \epsilon_{11}$/(10-9 C2·N-1·m-2)
    1 70.19 24 0.884 6 11.6 1.16 5
    2 50 0.3 1.2 -0.318 -0.16 0.082 6
    下载: 导出CSV
  • [1] SHECHTMAN D, BLECH I, GRATIAS D, et al. Metallic phase with long-range orientational order and no translational symmetry[J]. Physical Review Letters, 1984, 53(20): 1951-1953. doi: 10.1103/PhysRevLett.53.1951
    [2] ZHANG Z, URBAN K. Transmission electron microscope observations of dislocations and stacking faults in a decagonal Al-Cu-Co alloy[J]. Philosophical Magazine Letters, 1989, 60(3): 97-102. doi: 10.1080/09500838908206442
    [3] 苏梦雨, 肖俊华, 冯国益. 一维六方准晶中纳米尺度开裂孔洞的Ⅲ型断裂力学[J]. 固体力学学报, 2020, 41(3): 281-292. https://www.cnki.com.cn/Article/CJFDTOTAL-GTLX202003011.htm

    SU Mengyu, XIAO Junhua, FENG Guoyi. Type Ⅲ fracture mechanics of a nanoscale cracked hole in one-dimensional hexagonal quasicrystals[J]. Chinese Journal of Solid Mechanics, 2020, 41(3): 281-292. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GTLX202003011.htm
    [4] CHENG J X, SHENG D, SHI P P. Fracture analysis of one-dimensional hexagonal quasicrystals: researches of a finite dimensional rectangular plate by boundary collocation method[J]. Journal of Mechanical Science and Technology, 2017, 31(5): 2373-2383. doi: 10.1007/s12206-017-0434-4
    [5] 张炳彩, 丁生虎, 张来萍. 一维六方准晶双材料中圆孔边共线界面裂纹的反平面问题[J]. 应用数学和力学, 2022, 43(6): 639-647. doi: 10.21656/1000-0887.420202

    ZHANG Bingcai, DING Shenghu, ZHANG Laiping. The anti-plane problem of collinear interface cracks emanating from a circular hole in 1D hexagonal quasicrystal bi-materials[J]. Applied Mathematics and Mechanics, 2022, 43(6): 639-647. (in Chinese) doi: 10.21656/1000-0887.420202
    [6] SU M Y, XIAO J H, FENG G Y, et al. Mode-Ⅲ fracture of a nanoscale cracked hole in one-dimensional hexagonal piezoelectric quasicrystals[J]. International Journal of Mechanics and Materials in Design, 2022, 18: 423-433. doi: 10.1007/s10999-022-09589-7
    [7] RADI E, MARIANO P M. Stationary straight cracks in quasicrystals[J]. International Journal of Fracture, 2010, 166(1/2): 105-120.
    [8] 高媛媛, 刘官厅. 一维正交准晶中具有四条裂纹的椭圆孔口问题的解析解[J]. 应用数学和力学, 2019, 40(2): 210-222. doi: 10.21656/1000-0887.390032

    GAO Yuanyuan, LIU Guanting. Analytical solutions to problems of elliptical holes with 4 edge cracks in 1D orthorhombic quasicrystals[J]. Applied Mathematics and Mechanics, 2019, 40(2): 210-222. (in Chinese) doi: 10.21656/1000-0887.390032
    [9] YANG J, ZHOU Y T, MA H L, et al. The fracture behavior of two asymmetrical limited permeable cracks emanating from an elliptical hole in one-dimensional hexagonal quasicrystals with piezoelectric effect[J]. International Journal of Solids and Structures, 2017, 108: 175-185. doi: 10.1016/j.ijsolstr.2016.12.012
    [10] HU K Q, JIN H, YANG Z J, et al. Interface crack between dissimilar one-dimensional hexagonal quasicrystals with piezoelectric effect[J]. Acta Mechanica, 2019, 230: 2455-2474. doi: 10.1007/s00707-019-02404-z
    [11] ZHOU Y B, LI X F. Fracture analysis of an infinite 1D hexagonal piezoelectric quasicrystal plate with a penny-shaped dielectric crack[J]. European Journal of Mechanics A: Solids, 2019, 76: 224-234. doi: 10.1016/j.euromechsol.2019.04.011
    [12] ZHOU Y B, LI X F. A Yoffe-type moving crack in one-dimensional hexagonal piezoelectric quasicrystals[J]. Applied Mathematical Modelling, 2019, 65: 148-163.
    [13] 刘兴伟, 李星, 汪文帅. 一维六方压电准晶中正n边形孔边裂纹的反平面问题[J]. 应用数学和力学, 2020, 41(7): 713-724. doi: 10.21656/1000-0887.400334

    LIU Xingwei, LI Xing, WANG Wenshuai. The anti-plane problem of regular n-polygon holes with radial edge cracks in 1D hexagonal piezoelectric quasicrystals[J]. Applied Mathematics and Mechanics, 2020, 41(7): 713-724. (in Chinese) doi: 10.21656/1000-0887.400334
    [14] ALATY G, DÖMECI M C. On the fundamental equations of piezoelectric of quasicrystal media[J]. International Journal of Solids and Structures, 2012, 49(23/24): 3255-3262.
    [15] 路见可. 平面弹性复变方法[M]. 武汉: 武汉大学出版社, 2002.

    LU Jianke. Complex Variable Method of Plane Elasticity[M]. Wuhan: Wuhan University Press, 2002. (in Chinese)
    [16] 樊大钧. 数学弹性力学[M]. 北京: 新时代出版社, 1983.

    FAN Danjun. Mathematical Elasticity[M]. Beijing: New Era Press, 1983. (in Chinese)
    [17] 钟玉泉. 复变函数[M]. 北京: 高等教育出版社, 1987.

    ZHONG Yuquan. Complex Variables Functions[M]. Beijing: Higher Education Press, 1987. (in Chinese)
    [18] 范天佑. 准晶数学弹性理论及应用[M]. 北京: 北京理工大学出版社, 1999.

    FAN Tianyou. Mathematical Theory of Elasticity of Quasicrystals and Its Applications[M]. Beijing: Beijing Institute of Technology Press, 1999. (in Chinese)
    [19] DANG H Y, ZHAO M H, FAN C Y, et al. Analysis of a three-dimensional arbitrarily shaped interface crack in a one-dimensional hexagonal thermo-electro-elastic quasicrystal bi-material, part 2: numerical method[J]. Engineering Facture Mechanics, 2017, 180: 268-281.
    [20] LI L H, ZHAO Y. Interaction of a screw dislocation with interface and wedge-shaped cracks in one-dimensional hexagonal piezoelectric quasicrystals bimaterial[J]. Mathematical Problems in Engineering, 2019, 2019: 1-7.
    [21] LANDAU L D, LIFSHITZ I E. Statistical Physics[M]. 2nd ed. New York: Pergaman Press, 1968.
  • 加载中
图(18) / 表(1)
计量
  • 文章访问数:  534
  • HTML全文浏览量:  205
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-31
  • 修回日期:  2022-06-28
  • 刊出日期:  2023-07-01

目录

    /

    返回文章
    返回