留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于准ARX模型和SVR算法的非线性系统切换控制

王兰 董宜平 曹进德

王兰,董宜平,曹进德. 基于准ARX模型和SVR算法的非线性系统切换控制 [J]. 应用数学和力学,2022,43(11):1281-1287 doi: 10.21656/1000-0887.430122
引用本文: 王兰,董宜平,曹进德. 基于准ARX模型和SVR算法的非线性系统切换控制 [J]. 应用数学和力学,2022,43(11):1281-1287 doi: 10.21656/1000-0887.430122
WANG Lan, DONG Yiping, CAO Jinde. Switching Control of Nonlinear Systems Based on the Quasi-ARX Model and the SVR Algorithm[J]. Applied Mathematics and Mechanics, 2022, 43(11): 1281-1287. doi: 10.21656/1000-0887.430122
Citation: WANG Lan, DONG Yiping, CAO Jinde. Switching Control of Nonlinear Systems Based on the Quasi-ARX Model and the SVR Algorithm[J]. Applied Mathematics and Mechanics, 2022, 43(11): 1281-1287. doi: 10.21656/1000-0887.430122

基于准ARX模型和SVR算法的非线性系统切换控制

doi: 10.21656/1000-0887.430122
基金项目: 江苏省政策引导类计划(国际科技合作)项目(BZ2018031);江苏省“333”工程项目(BRA2018313)
详细信息
    作者简介:

    王兰(1983—),女,副教授,博士(E-mail:wanglan@wxit.edu.cn

    董宜平(1983—),男,高级工程师,博士(E-mail:yp.dong@foxmail.com

    曹进德(1963—),男,教授,博士生导师(通讯作者. E-mail:jdcao@seu.edu.cn

  • 中图分类号: O231.2

Switching Control of Nonlinear Systems Based on the Quasi-ARX Model and the SVR Algorithm

  • 摘要:

    该文基于改进的含有外部输入项的准线性自回归(准ARX)径向基函数(RBF)网络模型和支持向量回归(SVR)算法,提出了一种非线性切换控制方法。 改进的准ARX模型非线性部分采用RBF网络。 控制系统设计过程分为三个部分:首先,利用聚类方法确定模型的非线性参数;然后,采用线性SVR算法来解决控制系统的鲁棒性问题;接下来,基于控制误差给出切换判定函数,确定切换律给出控制序列。 最后通过数值仿真验证了该方法的有效性。

  • 图  1  仿真例子的控制结果图:(a) 控制输出 $ y(t) $,期望输出 $ y^*(t) $;(b) 输入序列 $ u(t) $;(c)切换序列 $ \chi(t) $

    Figure  1.  Control results of the example: (a) control output $ y(t) $ and desired output $ y^*(t) $; (b) control input $ u(t) $; (c) switching sequence $ \chi(t) $

    表  1  基于噪声$ v(t) $情况下控制误差对比表 $ v(t) $

    Table  1.   Comparison of errors with the noise

    mean of errors variance of errors
    linear control $-0.115 \;0$ $0.095\;3$
    NN control $-0.010\;3$ $0.008\;0$
    third control $-0.016\;3$ $0.007\;5$
    proposed control $-0.004\;3$ $0.005\;3$
    下载: 导出CSV
  • [1] HU J, HIRASAWA K, KUMAMARU K. A neurofuzzy-based adaptive predictor for control of nonlinear systems[J]. Transactions of the Society of Instrument and Control Engineers, 1999, 35(8): 1060-1068.
    [2] 赵玮, 任凤丽. 基于自适应控制的四元数时滞神经网络的有限时间同步[J]. 应用数学和力学, 2022, 43(1): 94-103

    ZHAO Wei, REN Fengli. Finite time adaptive synchronization of quaternion-value neural networks with time delays[J]. Applied Mathematics and Mechanics, 2022, 43(1): 94-103.(in Chinese)
    [3] YOUNG P C, MCKENNA P, BRUUN J. Identification of non-linear stochastic systems by state dependent parameter estimation[J]. International Journal of Control, 2001, 74(18): 1837-1857.
    [4] XI Y G, LI D W, LIN S. Model predictive control-status and challenges[J]. Acta Automatica Sinica, 2013, 39(3): 222-236.
    [5] 王兰, 谢达, 董宜平, 等. 基于准 ARX 多层学习网络模型的非线性系统自适应控制[J]. 应用数学和力学, 2019, 40(11): 1214-1223

    WANG Lan, XIE Da, DONG Yiping, et al. Adaptive control of nonlinear systems based on quasi-ARX multilayer learning network models[J]. Applied Mathematics and Mechanics, 2019, 40(11): 1214-1223.(in Chinese)
    [6] NARENDRA K S, PARTHASARATHY K. Identification and control of dynamical systems using neural networks[J]. IEEE Transactions on Neural Networks, 1990, 1(1): 4-27.
    [7] LI D P, LIU Y J, TONG S C, et al. Neural networks-based adaptive control for nonlinear state constrained systems with input delay[J]. IEEE Transactions on Cybernetics, 2019, 49(4): 1249-1258.
    [8] WANG L, CHENG Y, HU J, et al. Nonlinear system identification using quasi-ARX RBFN models with a parameter-classified scheme[J]. Complexity, 2017, 2017: 1-12.
    [9] WU J, SUN W, SU S F, et al. Neural-based adaptive control for nonlinear systems with quantized input and the output constraint[J]. Applied Mathematics and Computation, 2022, 413: 126637.
    [10] BILLINGS S A, WEI H L. A new class of wavelet networks for nonlinear system identification[J]. IEEE Transactions on Neural Networks, 2005, 16(4): 862-874.
    [11] WANG L, CHENG Y, HU J. Stabilizing switching control for nonlinear system based on quasi-ARX RBFN model[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2012, 7(4): 390-396.
    [12] CHENG L, WANG Z, JIANG F, et al. Adaptive neural network control of nonlinear systems with unknown dynamics[J]. Advances in Space Research, 2021, 67(3): 1114-1123.
    [13] JANOT A, YOUNG P C, GAUTIER M. Identification and control of electro-mechanical systems using state-dependent parameter estimation[J]. International Journal of Control, 2017, 90(4): 643-660.
    [14] YANG D, LI X, QIU J. Output tracking control of delayed switched systems via state-dependent switching and dynamic output feedback[J]. Nonlinear Analysis: Hybrid Systems, 2019, 32: 294-305.
    [15] BECHLIOULIS C P, ROVITHAKIS G A. Prescribed performance adaptive control for multi-input multi-output affine in the control nonlinear systems[J]. IEEE Transactions on Automatic Control, 2010, 55(5): 1220-1226.
    [16] AWAD M, KHANNA R. Support Vector Regression[M]//Efficient Learning Machines. Berkeley: Apress, 2015: 67-80.
    [17] TOIVONEN H T, TÖTTERMAN S, ÅKESSON B M. Identification of state-dependent parameter models with support vector regression[J]. International Journal of Control, 2007, 80(9): 1454-1470.
    [18] GOOGWIN G C, SIN K S. Adaptive Filtering Prediction and Control[M]. Dover Publications, 1984.
    [19] WANG L, CHENG Y, HU J. A quasi-ARX neural network with switching mechanism to adaptive control of nonlinear systems[J]. SICE Journal of Control, Measurement, and System Integration, 2010, 3(4): 246-252.
  • 加载中
图(1) / 表(1)
计量
  • 文章访问数:  349
  • HTML全文浏览量:  169
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-07
  • 修回日期:  2022-04-29
  • 网络出版日期:  2022-11-08
  • 刊出日期:  2022-11-30

目录

    /

    返回文章
    返回