[1] |
DAI L. Singular Control Systems[M]. Berlin: Spring-Verlag, 1989.
|
[2] |
支慧敏. 基于多不连续Lyapunov函数方法的切换奇异系统的稳定性分析[D]. 硕士学位论文. 郑州: 郑州大学, 2019.ZHI Huimin. Stability analysis of switched singular systems via a multiple discontinuous Lyapunov function approach[D]. Master Thesis. Zhengzhou: Zhengzhou University, 2019. (in Chinese)
|
[3] |
ANH P K, LINH P T, THUAN D D, et al. Stability analysis for switched discrete-time linear singular systems[J]. Automatica, 2020, 119: 109100. doi: 10.1016/j.automatica.2020.109100
|
[4] |
CARABALLO T, EZZINE F, HAMMAMI M A. On the exponential stability of stochastic perturbed singular systems in mean square[J]. Applied Mathematics & Optimization, 2021, 84: 2923-2945.
|
[5] |
HAN Y, KAO Y, GAO C. Robust observer-based H∞ control for uncertain discrete singular systems with time-varying delays via sliding mode approach[J]. ISA Transactions, 2018, 80: 81-88. doi: 10.1016/j.isatra.2018.05.023
|
[6] |
SHI P, WANG H, LIM C C. Network-based event-triggered control for singular systems with quantizations[J]. IEEE Transactions on Industrial Electronics, 2016, 63(2): 1230-1238. doi: 10.1109/TIE.2015.2475515
|
[7] |
QI W, ZONG G, KARIMI H R. Sliding mode control for nonlinear stochastic singular semi-Markov jump systems[J]. IEEE Transactions on Automatic Control, 2020, 65(1): 361-368. doi: 10.1109/TAC.2019.2915141
|
[8] |
杨冬梅, 李祉含. 广义非线性脉冲切换系统的指数稳定和L2增益控制[J]. 东北大学学报, 2021, 42(6): 908-912. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX202106022.htmYANG Dongmei, LI Zhihan. Exponential stability and L2 gain control of generalized nonlinear impulsive switched systems[J]. Journal of Northeastern University, 2021, 42(6): 908-912. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX202106022.htm
|
[9] |
王一晶, 王龙. 切换系统的自适应广义预测控制[J]. 应用数学和力学, 2005, 26 (5): 595-601. http://www.applmathmech.cn/article/id/520WANG Yijing, WANG Long. Adaptive generalized predictive control for switched systems[J]. Applied Mathematics and Mechanics, 2005, 26(5): 595-601. (in Chinese) http://www.applmathmech.cn/article/id/520
|
[10] |
LIBERZON D. Switching in Systems and Control[M]. Birkhäuser Boston, 2003.
|
[11] |
SUN Z, GE S S. Switched Linear Systems: Control and Design[M]. London: Springer-Verlag, 2005.
|
[12] |
菲利普维奇V. 切换系统的全局指数稳定性[J]. 应用数学和力学, 2011, 32(9): 1118-1126. doi: 10.3879/j.issn.1000-0887.2011.09.011FILIPOVIC V. Global exponential stability of switched systems[J]. Applied Mathematics and Mechanics, 2011, 32(9): 1118-1126. (in Chinese) doi: 10.3879/j.issn.1000-0887.2011.09.011
|
[13] |
WANG J, LIANG J. Robust finite-horizon stability and stabilization for positive switched FM-Ⅱ model with actuator saturation[J]. Nonlinear Analysis: Hybrid Systems, 2020, 35: 100829. doi: 10.1016/j.nahs.2019.100829
|
[14] |
曹娟, 任凤丽. Markov切换时滞基因调控网络的均方同步和随机无源同步[J]. 应用数学和力学, 2022, 43(2): 198-206. doi: 10.21656/1000-0887.420256CAO Juan, REN Fengli. Mean square synchronization and random passive synchronization of Markov switched delay gene regulatory networks[J]. Applied Mathematics and Mechanics, 2022, 43(2): 198-206. (in Chinese) doi: 10.21656/1000-0887.420256
|
[15] |
WANG J, HOU Y, JIANG L, et al. Robust stability and stabilization of 2D positive system employing saturation[J]. Circuits, Systems, and Signal Processing, 2021, 40(3): 1183-1206. doi: 10.1007/s00034-020-01528-1
|
[16] |
WANG D, SHI P, WANG J, et al. Delay-dependent exponential H∞ filtering for discrete-time switched delay systems[J]. International Journal of Robust and Nonlinear Control, 2012, 22(13): 1522-1536. doi: 10.1002/rnc.1764
|
[17] |
PENG X, WU H. Non-fragile robust finite-time stabilization and H∞ performance analysis for fractional-order delayed neural networks with discontinuous activations under the asynchronous switching[J]. Neural Computing and Applications, 2020, 32(8): 4045-4071. doi: 10.1007/s00521-018-3682-z
|
[18] |
刘婷婷, 杨轩, 黄丽琼. 切换非线性正系统的有限时间稳定性[J]. 控制与决策, 37(7): 1915-1920. https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC202207030.htmLIU Tingting, YANG Xuan, HUANG Liqiong. Finite time stability of switched nonlinear positive systems[J]. Control and Decision, 37(7): 1915-1920. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC202207030.htm
|
[19] |
QI W, ZONG G, CHENG J, et al. Robust finite-time stabilization for positive delayed semi-Markovian switching systems[J]. Applied Mathematics and Computation, 2019, 351(12): 139-152.
|
[20] |
KNORN F, MASON O, SHORTEN R. On linear co-positive Lyapunov functions for sets of linear positive systems[J]. Automatica, 2009, 45(8): 1943-1947. doi: 10.1016/j.automatica.2009.04.013
|
[21] |
LIANG J, WANG J, HUANG T. l1 filtering for continuous-discrete T-S fuzzy positive Roesser model[J]. Journal of the Franklin Institute, 2018, 355(15): 7281-7305. doi: 10.1016/j.jfranklin.2018.07.017
|
[22] |
潘圣韬, 孙继涛. 不确定离散脉冲系统的鲁棒H∞滤波问题[J]. 应用数学和力学, 2009, 30(2): 221-228. http://www.applmathmech.cn/article/id/1197PAN Shengtao, SUN Jitao. Robust H∞ filtering of uncertain discrete impulsive systems[J]. Applied Mathematics and Mechanics, 2009, 30(2): 221-228. (in Chinese) http://www.applmathmech.cn/article/id/1197
|
[23] |
孙凤琪. 不确定时滞摄动滤波误差动态系统的稳定性分析[J]. 应用数学和力学, 2020, 41(8): 899-911. doi: 10.21656/1000-0887.400368SUN Fengqi. Stability analysis of uncertain time-delay perturbed filtering error dynamic system[J]. Applied Mathematics and Mechanics, 2020, 41(8): 899-911. (in Chinese) doi: 10.21656/1000-0887.400368
|
[24] |
WANG F, WANG Z, LIANG J, et al. Resilient filtering for linear time-varying repetitive processes under uniform quantizations and round-Robin protocols[J]. IEEE Transactions on Circuits and Systems : Regular Papers, 2018, 65(9): 2992-3004.
|
[25] |
SHEN H, HUANG Z, CAO J, et al. Exponential H∞ filtering for continuous-time switched neural networks under persistent dwell-time switching regularity[J]. IEEE Transactions on Cybernetics, 2020, 50(6): 2440-2449.
|
[26] |
CHARQI M, CHAIBI N, TISSIR E H. H∞ filtering of discrete-time switched singular systems with time-varying delays[J]. International Journal of Adaptive Control and Signal Processing, 2020, 34(4): 444-468.
|
[27] |
WANG J, LIANG J, ZHANG C T. Dissipativity analysis and synthesis for positive Roesser systems under the switched mechanism and Takagi-Sugeno fuzzy rules[J]. Information Sciences, 2021, 546: 234-252.
|
[28] |
LI S, XIANG Z. Dwell-time conditions for exponential stability and standard L1-gain performance of discrete-time singular switched positive systems with time-varying delays[J]. Nonlinear Analysis: Hybrid Systems, 2020, 38: 100939.
|
[29] |
LI S, LIN H. On l1 stability of switched positive singular systems with time-varying delay[J]. International Journal of Robust and Nonlinear Control, 2017, 27(16): 2798-2812.
|
[30] |
黄金杰, 郝现志, 潘晓真. 基于模型依赖驻留时间的异步切换控制[J]. 控制与决策, 2021, 36(3): 609-618. https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC202103010.htmHUANG Jinjie, HAO Xianzhi, PAN Xiaozhen. Asynchronous switched control based on model dependent dwell time[J]. Control and Decision, 2021, 36(3): 609-618. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC202103010.htm
|
[31] |
XU S, LAM J. Robust Control and Filtering of Singular Systems[M]. Heidelberg: Springer-Verlag, 2006.
|
[32] |
WANG J, LIANG J, ZHANG C T, et al. Event-triggered non-fragile control for uncertain positive Roesser model with PDT switching mechanism[J]. Applied Mathematics and Computation, 2021, 406(10): 126266.
|