[1] |
杜洋, 赵凯, 朱忠良, 等. 超快激光精密制造技术的研究与应用[J]. 激光与红外, 2020, 50(12): 1419-1425. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW202012002.htmDU Yang, ZHAO Kai, ZHU Zhongliang, et al. Research and application of ultrafast laser precision manufacturing technology[J]. Laser & Infrared, 2020, 50(12): 1419-1425. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW202012002.htm
|
[2] |
温嵘, 王琦, 李璇, 等. 超快激光加工技术在航空发动机制造中的应用[J]. 电加工与模具, 2020, 55(6): 56-59. https://www.cnki.com.cn/Article/CJFDTOTAL-DJGU202006011.htmWEN Rong, WANG Qi, LI Xuan, et al. Application of ultrafast laser machining technology in aero-engine manufacturing[J]. Electric Machining and Touch Tools, 2020, 55(6): 56-59. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DJGU202006011.htm
|
[3] |
PHILLIPS K C, GANDHI H H, MAZUR E, et al. Ultrafast laser processing of materials: a review[J]. Advances in Optics and Photonics, 2015, 7(4): 684-712. doi: 10.1364/AOP.7.000684
|
[4] |
周可平, 何林美, 赵晓梅, 等. 飞秒激光新技术的应用研究[J]. 航空精密制造技术, 2020, 56(6): 34-37. https://www.cnki.com.cn/Article/CJFDTOTAL-HJZJ202006009.htmZHOU Keping, HE Linmei, ZHAO Xiaomei, et al. Application of femtosecond laser technology[J]. Aviation Precision Manufacturing Technology, 2020, 56(6): 34-37. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HJZJ202006009.htm
|
[5] |
SHEN H, FENG D. Thermal and mechanical behavior in laser trepan drilling of yttria-stabilized zirconia[J]. Journal of Heat Transfer, 2019, 141(4): 042101. doi: 10.1115/1.4042778
|
[6] |
秦渊, 毕娟, 倪晓武, 等. 毫秒激光金属打孔的解析和实验[J]. 光学精密工程, 2011, 19(2): 340-347. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201102018.htmQIN Yuan, BI Juan, NI Xiaowu, et al. Analysis and experiment of metal drilling by millisecond laser[J]. Optics and Precision Engineering, 2011, 19(2): 340-347. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201102018.htm
|
[7] |
赵万芹, 梅雪松, 王文君. 超短脉冲激光微孔加工(上): 理论研究[J]. 红外与激光工程, 2019, 48(1): 140-148. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201902019.htmZHAO Wanqin, MEI Xuesong, WANG Wenjun. Ultra-short pulse laser microhole machining (part Ⅰ): theoretical study[J]. Infrared and Laser Engineering, 2019, 48(1): 140-148. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201902019.htm
|
[8] |
CHENG J, LIU C S, SHANG S, et al. A review of ultrafast laser materials micromachining[J]. Optics and Laser Technology, 2013, 46(1): 88-102.
|
[9] |
RAHAMAN A, DU X, ZHOU B, et al. Absorption and temperature distribution during ultrafast laser microcutting of polymeric materials[J]. Journal of Laser Applications, 2020, 32(2): 022044. doi: 10.2351/7.0000080
|
[10] |
RAHAMAN A, KAR A, YU X. Thermal effects of ultrafast laser interaction with polypropylene[J]. Opt Express, 2019, 27(4): 5764-5783. doi: 10.1364/OE.27.005764
|
[11] |
田晓耕, 沈亚鹏. 广义热弹性问题研究进展[J]. 力学进展, 2012, 42(1): 18-28. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201201004.htmTIAN Xiaogeng, SHEN Yapeng. Advances in generalized thermoelastic problems[J]. Advances in Mechanics, 2012, 42(1): 18-28. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201201004.htm
|
[12] |
包立平, 胡玉博, 吴立群. 具有初值间断的Burgers方程奇摄动解[J]. 应用数学和力学, 2020, 41(7): 807-816. doi: 10.21656/1000-0887.400270BAO Liping, HU Yubo, WU Liqun. Singularly perturbed solutions of burgers equations with initial value discontinuities[J]. Applied Mathematics and Mechanics, 2020, 41(7): 807-816. (in Chinese) doi: 10.21656/1000-0887.400270
|
[13] |
谭胜, 吴建军, 黄强, 等. 基于双相延迟模型的飞秒激光烧蚀金属模型[J]. 物理学报, 2019, 68(5): 233-244. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201905027.htmTAN Sheng, WU Jianjun, HUANG Qiang, et al. A femtosecond laser ablation model based on two-phase delay model[J]. Acta Physica Sinica, 2019, 68(5): 233-244. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201905027.htm
|
[14] |
TZOU D Y. A unified field approach for heat conduction from macro-to micro-scales[J]. Journal of Heat Transfer, 1995, 117(1): 8-16.
|
[15] |
XIONG Q L, LI Z H, TIAN X G. Ultrafast thermomechanical responses of a copper film under femtosecond laser trains: a molecular dynamics study[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 471(2184). DOI: 10.1098/rspa.2015.0614.
|
[16] |
LI Y, LI C, YAO W, et al. Solid-to-super-critical phase change and resulting stress wave during internal laser ablation[J]. Journal of Thermal Stresses, 2018, 41(10/12): 1364-1379.
|
[17] |
CATTANEO C. Sulla conduzione del calore[C]//Attidel Seminario Matematico e Fisicodella Università di Modena. Vol 3. 1948: 83-101.
|
[18] |
VERNOTTE P. Les paradoxes de la theorie continue de l'equation de la chaleur[J]. Comptes Rendus, 1958, 246: 3154-3155.
|
[19] |
LORD H W, SHULMAN Y. A generalized dynamical theory of thermoelasticity[J]. Journal of the Mechanics and Physics of Solids, 1967, 15(5): 299-309.
|
[20] |
何天虎, 曹丽, 周又和. 受移动热源作用的两端固定杆的广义热-弹耦合问题[J]. 工程力学, 2008, 25(5): 22-26. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200805008.htmHE Tianhu, CAO Li, ZHOU Youhe. Generalized thermal-elastic coupling problem of fixed rod with two ends subjected to moving heat source[J]. Engineering Mechanics, 2008, 25(5): 22-26. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200805008.htm
|
[21] |
WANG X, XU X. Thermoelastic wave induced by pulsed laser heating[J]. Applied Physics A: Materials Science & Processing, 2001, 73(1): 107-114.
|
[22] |
黄飞, 马永斌. 移动热源作用下基于分数阶应变的三维弹性体热-机响应[J]. 应用数学和力学, 2021, 42(4): 373-384. doi: 10.21656/1000-0887.400346HUANG Fei, MA Yongbin. Thermomechanical responses of 3D media under moving heat sources based on fractional-order strains[J]. Applied Mathematics and Mechanics, 2021, 42(4): 373-384. (in Chinese) doi: 10.21656/1000-0887.400346
|
[23] |
马永斌, 李东升. 考虑记忆效应及尺寸效应窄长薄板的磁-热弹性耦合动态响应[J]. 应用数学和力学, 2022, 43(8): 888-900. doi: 10.21656/1000-0887.420200MA Yongbin, LI Dongsheng. Magneto-thermoelastic coupling dynamic responses of narrow long thin plates under memory effects and size effects[J]. Applied Mathematics and Mechanics, 2022, 43(8): 888-900. (in Chinese) doi: 10.21656/1000-0887.420200
|
[24] |
EL-KARAMANY A S, EZZAT M A. Thermal shock problem in generalized thermo-viscoelasticty under four theories[J]. International Journal of Engineering Science, 2004, 42(7): 649-671.
|
[25] |
熊春宝, 郭颖, 刁钰, 等. 荷载作用下多孔饱和地基的热-水-力耦合动力响应分析[J]. 计算力学学报, 2018, 35(6): 795-801. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201806021.htmXIONG Chunbao, GUO Ying, DIAO Yu, et al. Analysis of thermal-hydro-mechanical coupling dynamic response of porous saturated foundation under load[J]. Chinese Journal of Computational Mechanics, 2018, 35(6): 795-801. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201806021.htm
|
[26] |
ABO-DAHAB S, ABD-ALLA A, ALQARNI A J. A two-dimensional problem with rotation and magnetic field in the context of four thermoelastic theories[J]. Results in Physics, 2017, 7: 2742-2751.
|
[27] |
ALOTAIBI H, ABO-DAHAB S, KHALIL E, et al. Mathematical modeling on rotational magneto-thermoelastic phenomenon under gravity and laser pulse considering four theories[J]. Complexity, 2021, 2021: 5521684.
|
[28] |
DESWAL S, KALKAL K. A two-dimensional generalized electro-magneto-thermoviscoelastic problem for a half-space with diffusion[J]. International Journal of Thermal Sciences, 2011, 50(5): 749-759.
|
[29] |
CHASE JR M W. NIST-JANAF thermochemical tables[C]//Journal of Physical and Chemical Reference Data. Monograph 9, 1998.
|
[30] |
VEDAVARZ A, KUMAR S, MOALLEMI M K. Significance of non-fourier heat waves in conduction[J]. Journal of Heat Transfer, 1994, 116(1): 221-224.
|
[31] |
ZHENG C, ZHAO K, SHEN H, et al. Crack behavior in ultrafast laser drilling of thermal barrier coated nickel superalloy[J]. Journal of Materials Processing Technology, 2020, 282: 116678.
|
[32] |
关振铎, 张中太, 焦金牛. 无机材料物理性能[M]. 北京: 清华大学出版社, 2011: 87-117.GUAN Zhenduo, ZHANG Zhongtai, JIAO Jinniu. Physical Properties of Inorganic Materials[M]. Beijing: Tsinghua University Press, 2011: 87-117. (in Chinese)
|
[33] |
徐辉, 邓建兵, 沈江立. 固体材料比热容随温度变化规律的研究[J]. 宇航材料工艺, 2011, 41(5): 74-77. https://www.cnki.com.cn/Article/CJFDTOTAL-YHCG201105020.htmXU Hui, DENG Jianbing, SHEN Jiangli. Study on specific heat capacity of solid materials with temperature variation[J]. Aerospace Materials & Technology, 2011, 41(5): 74-77. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YHCG201105020.htm
|
[34] |
单水维. Y2O3稳定ZrO2陶瓷材料导热性能的研究[D]. 硕士学位论文. 包头: 内蒙古科技大学, 2007.SHAN Shuiwei. Study on thermal conduction properties of yttria-stabilized zirconia ceramic material[D]. Master Thesis. Baotou: Inner Mongolia University of Science & Technology, 2007. (in Chinese)
|