A Discrete Element Method for Irregular Granular Materials Based on Multi-Dilated Polyhedron Elements
-
摘要: 非规则颗粒材料广泛地存在于自然界和工业生产中,其复杂的几何形态对力学性质有显著的影响. 为构建更接近真实颗粒形态的理论模型,以扩展多面体为基本单元,发展了扩展多面体组合单元. 为验证扩展多面体组合单元的可靠性,分别对凸形三棱柱单元、凹形正倒锥体单元在平底漏斗中的卸料过程进行了离散元模拟,并与试验结果进行比较分析,得到其具有较好的一致性. 在此基础上,对不同形态的组合单元进行堆积和卸料离散元模拟,研究了颗粒形状对堆积分数、卸料流量和休止角的影响. 结果表明,颗粒形状越复杂,颗粒之间的互锁效应越显著,颗粒系统更加稳定. 扩展多面体组合单元的有效应用,为离散元数值模拟描述任意形态颗粒材料提供了一种新的构建方法.Abstract: Irregular granular materials are widely available in nature and industrial fields. To construct a theoretical model closer to the real granular materials, a multi-dilated polyhedron model based on the dilated polyhedron element was developed. To verify the reliability of the multi-dilated polyhedron model, the discharge processes of the convex triangular prism particles and concave upward-downward conical particles in the flat bottom hopper were simulated and compared with experimental results, to show good consistency. Besides, the piling and discharge process of differently shaped multi-dilated polyhedron particles were simulated. Furthermore, the effects of particle shapes on the piling fractions, mass flow rates and angles of repose were discussed. The results indicate that, given a more complex particle shape, the interlocking between particles will be stronger, thereby the stability of the granular system will be higher. The effective application of multi-dilated polyhedron elements provides a new model-building method for irregular granular materials.
-
表 1 两种扩展多面体组合单元的主要计算参数
Table 1. Major geometric and physical parameters of the triangular prism and the upward-downward conical elements
parameter symbol triangular prism element upward-downward conical element element mass m/g 0.346 9 0.347 0 density ρ/(kg/m3) 652 1 283 dilating radius r/mm 0.1 0.1 friction coefficient μ 0.3 0.3 Young’s modulus E/GPa 1.0 1.0 Poisson’s ratio ν 0.3 0.3 表 2 扩展多面体组合单元的主要几何和物理参数
Table 2. Major geometric and physical parameters of multi-dilated polyhedrons
parameter value parameter value density ρ/(kg/m3) 2 500 Poisson’s ratio ν 0.3 Young’s modulus E/GPa 10 friction coefficient μ 0.3 dilating radius r/m 0.02 restitution coefficient η 0.3 -
[1] CUNDALL P A, STRACK O D L. A discrete numerical model for granular assemblies[J]. Geotechnique, 1979, 29(1): 47-65. doi: 10.1680/geot.1979.29.1.47 [2] KRUGGEL-EMDEN H, RICKELT S, WIRTZ S, et al. A study on the validity of the multi-sphere discrete element method[J]. Powder Technology, 2008, 188(2): 153-165. doi: 10.1016/j.powtec.2008.04.037 [3] FERELLEC J F, MCDOWELL G R. A simple method to create complex particle shapes for DEM[J]. Geomechanics and Geoengineering: an International Journal, 2008, 3(3): 211-216. doi: 10.1080/17486020802253992 [4] HOHNER D, WIRTZ S, SCHERER V. A numerical study on the influence of particle shape on hopper discharge within the polyhedral and multi-sphere discrete element method[J]. Powder Technology, 2012, 226: 16-28. doi: 10.1016/j.powtec.2012.03.041 [5] KHAZENI A, MANSOURPOUR Z. Influence of non-spherical shape approximation on DEM simulation accuracy by multi-sphere method[J]. Powder Technology, 2018, 332: 265-278. doi: 10.1016/j.powtec.2018.03.030 [6] LU L Q, GAO X, SHAHNAM M, et al. Simulations of biomass pyrolysis using glued-sphere CFD-DEM with 3-D intra-particle models[J]. Chemical Engineering Journal, 2021, 419(6): 129564. [7] ZHOU L, YU J Q, LIANG L S, et al. Study on key issues in the modelling of maize seeds based on the multi-sphere method[J]. Powder Technology, 2021, 394: 791-812. doi: 10.1016/j.powtec.2021.09.020 [8] 任石磊, 韩飞鹏, 谢斌, 等. 基于三维CFD-DEM的多孔介质流场数值模拟[J]. 应用数学和力学, 2017, 38(10): 1093-1102. doi: 10.21656/1000-0887.370326REN Shilei, HAN Feipeng, XIE Bin, et al. Numerical simulation of flow fields in porous media based on the 3D CFD-DEM[J]. Applied Mathematics and Mechanics, 2017, 38(10): 1093-1102. (in Chinese) doi: 10.21656/1000-0887.370326 [9] 边学成, 李伟, 李公羽, 等. 基于颗粒真实几何形状的铁路道砟剪切过程三维离散元分析[J]. 工程力学, 2015, 32(5): 64-75. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201505010.htmBIAN Xuecheng, LI Wei, LI Gongyu, et al. Three-dimensional discrete element analysis of railway ballast's shear process based on particles' real geometry[J]. Engineering Mechanics, 2015, 32(5): 64-75. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201505010.htm [10] 罗滔, 李刚, OOI E T, 等. 堆石体宏细观力学特性演化机制的离散元模拟[J]. 武汉大学学报(工学版), 2018, 51(7): 607-612. https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD201807007.htmLUO Tao, LI Gang, OOI E T, et al. DEM modelling of macro-and meso-mechanisms for rockfill materials[J]. Engineering Journal of Wuhan University, 2018, 51(7): 607-612. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD201807007.htm [11] ZHAO B, AN X Z, WANG Y, et al. Packing of different shaped tetrahedral particles: DEM simulation and experimental study[J]. Powder Technology, 2020, 360: 21-32. doi: 10.1016/j.powtec.2019.09.072 [12] PODLOZHNYUK A, PIRKER S, KLOSS C. Efficient implementation of superquadric particles in discrete element method within an open-source framework[J]. Computational Particle Mechanics, 2017, 4(1): 101-118. doi: 10.1007/s40571-016-0131-6 [13] 王蕴嘉, 宋二祥. 堆石料颗粒形状对堆积密度及强度影响的离散元分析[J]. 岩土力学, 2019, 40(6): 2416-2426. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201906042.htmWANG Yunjia, SONG Erxiang. Discrete element analysis of the particle shape effect on packing density and strength of rockfills[J]. Rock and Soil Mechanics, 2019, 40(6): 2416-2426. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201906042.htm [14] 张成功, 尹振宇, 吴则祥, 等. 颗粒形状对粒状材料圆柱塌落影响的三维离散元模拟[J]. 岩土力学, 2019, 40(3): 1197-1203. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201903041.htmZHANG Chenggong, YIN Zhenyu, WU Zexiang, et al. Three-dimensional discrete element simulation of influence of particle shape on granular column collapse[J]. Rock and Soil Mechanics, 2019, 40(3): 1197-1203. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201903041.htm [15] HOHNER D, WIRTZ S, SCHERER V. A study on the influence of particle shape on the mechanical interactions of granular media in a hopper using the discrete element method[J]. Powder Technology, 2015, 278: 286-305. doi: 10.1016/j.powtec.2015.02.046 [16] 孔亮, 彭仁. 颗粒形状对类砂土力学性质影响的颗粒流模拟[J]. 岩石力学与工程学报, 2011, 30(10): 2112-2119. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201110020.htmKONG Liang, PENG Ren. Particle flow simulation of influence of particle shape on mechanical properties of quasi-sands[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(10): 2112-2119. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201110020.htm [17] LU G, THIRD J R, MULLER C R. Discrete element models for non-spherical particle systems: from theoretical developments to applications[J]. Chemical Engineering Science, 2015, 127: 425-465. doi: 10.1016/j.ces.2014.11.050 [18] LIN X, NG T. Contact detection algorithms for three-dimensional ellipsoids in discrete element modelling[J]. International Journal for Numerical & Analytical Methods in Geomechanics, 1995, 19(9): 653-659. [19] YAN B, REGUEIRO R A, STURE S. Three-dimensional ellipsoidal discrete element modeling of granular materials and its coupling with finite element facets[J]. Engineering Computations, 2010, 27(4): 519-550. doi: 10.1108/02644401011044603 [20] CLEARY P W. Industrial particle flow modelling using discrete element method[J]. Engineering Computations, 2009, 26(6): 698-743. doi: 10.1108/02644400910975487 [21] 崔泽群, 陈友川, 赵永志, 等. 基于超二次曲面的非球形离散单元模型研究[J]. 计算力学学报, 2013, 30(6): 854-859. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201306017.htmCUI Zequn, CHEN Youchuan, ZHAO Yongzhi, et al. Study of discrete element model for non-sphere particles base on super-quadrics[J]. Chinese Journal of Computational Mechanics, 2013, 30(6): 854-859. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201306017.htm [22] 王嗣强, 季顺迎. 基于CUDA-GPU架构的超二次曲面离散单元并行算法[J]. 应用数学和力学, 2019, 40(7): 751-767. doi: 10.21656/1000-0887.390267WANG Siqiang, JI Shunying. A parallel algorithm for super-quadric discrete elements based on the CUDA-GPU architecture[J]. Applied Mathematics and Mechanics, 2019, 40(7): 751-767. (in Chinese) doi: 10.21656/1000-0887.390267 [23] NASSAUER B, LIEDKE T, KUNA M. Polyhedral particles for the discrete element method[J]. Granular Matter, 2013, 15(1): 85-93. doi: 10.1007/s10035-012-0381-9 [24] 洪俊, 李建兴, 沈月, 等. 多面体颗粒的接触识别及离散元动力学建模[J]. 东南大学学报(自然科学版), 2018, 48(6): 1082-1087. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201806014.htmHONG Jun, LI Jianxing, SHEN Yue, et al. Contact detection and dynamic model for polyhedral particles based on discrete element method[J]. Journal of Southeast University (Natural Science Edition), 2018, 48(6): 1082-1087. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201806014.htm [25] GALINDO-TORRES S A, ALONSO-MARROQUIN F, WANG Y C, et al. Molecular dynamics simulation of complex particles in three dimensions and the study of friction due to nonconvexity[J]. Physical Review E, 2009, 79: 060301. [26] 刘璐, 姜庆郁, 季顺迎. 基于扩展多面体单元的DEM-SPH耦合算法及应用[J]. 水动力学研究与进展, 2019, 34(4): 456-466. https://www.cnki.com.cn/Article/CJFDTOTAL-SDLJ201904005.htmLIU Lu, JIANG Qingyu, JI Shunying. Dilated polyhedron-based on DEM-SPH coupling algorithm and applications[J]. Chinese Journal of Hydrodynamics, 2019, 34(4): 456-466. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SDLJ201904005.htm [27] LIU L, JI S Y. Ice load on floating structure simulated with dilated polyhedral discrete element method in broken ice field[J]. Applied Ocean Research, 2018, 75: 53-65. [28] LI C B, PENG Y X, ZHANG P, et al. The contact detection for heart-shaped particles[J]. Powder Technology, 2019, 346: 85-96. [29] 王嗣强, 乔婷, 张林风, 等. 基于水平集接触算法的任意形态颗粒材料球谐离散元方法[J]. 中国科学: 物理学力学天文学, 2022, 52(2): 42-57. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK202202004.htmWANG Siqiang, QIAO Ting, ZHANG Linfeng, et al. A discrete element method with spherical harmonics for irregular granular materials based on the level set contact algorithm[J]. Scientia Sinica: Physica, Mechanica & Astronomica, 2022, 52(2): 42-57. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK202202004.htm [30] FENG Y T. An energy-conserving contact theory for discrete element modelling of arbitrarily shaped particles: basic framework and general contact model[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 373: 113454. [31] FENG Y T. An energy-conserving contact theory for discrete element modelling of arbitrarily shaped particles: contact volume based model and computational issues[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 373: 113493. [32] LIU Z H, ZHAO Y Z. Multi-super-ellipsoid model for non-spherical particles in DEM simulation[J]. Powder Technology, 2020, 361: 190-202. [33] RAKOTONIRINA A D, DELENNE J Y, RADJAI F, et al. Grains3D, a flexible DEM approach for particles of arbitrary convex shape, part Ⅲ: extension to non-convex particles modelled as glued convex particles[J]. Computational Particle Mechanics, 2019, 6: 55-84. [34] NAN X, HOU J M, SHEN Z H, et al. CFD-DEM coupling with multi-sphere particles and application in predicting dynamic behaviors of drifting boats[J]. Ocean Engineering, 2022, 247: 110368. [35] LU L Q, GAO X, SHAHNAM M, et al. Open source implementation of glued sphere discrete element method and non﹕pherical biomass fast pyrolysis simulation[J]. AIChE Journal, 2021, 67: 17211. [36] ZHANG B N, REGUEIRO R, DRUCKREY A, et al. Construction of poly-ellipsoidal grain shapes from SMT imaging on sand, and the development of a new DEM contact detection algorithm[J]. Engineering Computations, 2018, 35(2): 733-771. [37] WANG S Q, JI S Y. Flow characteristics of nonspherical granular materials simulated with multi-superquadric elements[J]. Particuology, 2021, 54(1): 25-36. [38] VARADHAN G, MANOCHA D. Accurate Minkowski sum approximation of polyhedral models[J]. Graphical Models, 2006, 68(4): 343-355. [39] GALINDO-TORRES S A, PEDROSO D M, WILLIAMS D J, et al. Breaking processes in three-dimensional bonded granular materials with general shapes[J]. Computer Physics Communications, 2012, 183(2): 266-277. [40] WACHS A, GIROLAMI L, VINAY G, et al. Grains3D, a flexible DEM approach for particles of arbitrary convex shape, part Ⅰ: numerical model and validations[J]. Powder Technology, 2012, 224: 374-389. [41] SEELEN L, PADDING J T, KUIPERS J. A granular discrete element method for arbitrary convex particle shapes: method and packing generation[J]. Chemical Engineering Science, 2018, 189: 84-101. [42] ZHANG Q, JIA C J, YU J, et al. Multisphere representation of convex polyhedral particles for DEM simulation[J]. Advances in Civil Engineering, 2021, 2021: 8846004. [43] 刘璐, 季顺迎. 基于扩展多面体包络函数的快速接触搜索算法[J]. 中国科学: 物理学力学天文学, 2019, 49(6): 13-27. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201906002.htmLIU Lu, JI Shunying. A fast detection algorithm based on the envelope function of dilated polyhedron[J]. Scientia Sinica: Physica, Mechanica & Astronomica, 2019, 49(6): 13-27. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201906002.htm [44] HOULSBY G T. Potential particles: a method for modelling non-circular particles in DEM[J]. Computers & Geotechnics, 2009, 36(6): 953-959. [45] LIU S D, ZHOU Z Y, ZOU R P, et al. Flow characteristics and discharge rate of ellipsoidal particles in a flat bottom hopper[J]. Powder Technology, 2014, 253: 70-79. [46] GOVENDER N, WILKE D N, WU C Y, et al. Hopper flow of irregularly shaped particles (non-convex polyhedra): GPU-based DEM simulation and experimental validation[J]. Chemical Engineering Science, 2018, 188: 34-51.