留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

柔性扑翼翼型的气动性能仿真分析

王奇 朱寅鑫 牛培行 刘少宝

王奇,朱寅鑫,牛培行,刘少宝. 柔性扑翼翼型的气动性能仿真分析 [J]. 应用数学和力学,2022,43(5):586-596 doi: 10.21656/1000-0887.430155
引用本文: 王奇,朱寅鑫,牛培行,刘少宝. 柔性扑翼翼型的气动性能仿真分析 [J]. 应用数学和力学,2022,43(5):586-596 doi: 10.21656/1000-0887.430155
WANG Qi, ZHU Yinxin, NIU Peixing, LIU Shaobao. Simulation of Aerodynamic Performances of Flexible Flapping Wing Airfoils[J]. Applied Mathematics and Mechanics, 2022, 43(5): 586-596. doi: 10.21656/1000-0887.430155
Citation: WANG Qi, ZHU Yinxin, NIU Peixing, LIU Shaobao. Simulation of Aerodynamic Performances of Flexible Flapping Wing Airfoils[J]. Applied Mathematics and Mechanics, 2022, 43(5): 586-596. doi: 10.21656/1000-0887.430155

柔性扑翼翼型的气动性能仿真分析

doi: 10.21656/1000-0887.430155
基金项目: 国家自然科学基金(11902155);江苏省自然科学基金(BK20190382);江苏高校优势学科建设工程项目
详细信息
    作者简介:

    王奇(1998—),男,硕士生(E-mail:2902930121@qq.com

    刘少宝(1988—),男,副研究员,博士,硕士生导师 (通讯作者.  E-mail:sbliu@nuaa.edu.cn

  • 中图分类号: O355; V211.3

Simulation of Aerodynamic Performances of Flexible Flapping Wing Airfoils

  • 摘要:

    与固定翼相比,在低速、小Reynolds数条件下,扑翼飞行具有显著的气动性能优势,受到越来越多的重视。然而,目前对扑翼翼型的研究以刚性翼型为主,对柔性翼型气动性能认识还不清楚。该文建立了柔性椭圆翼型的流固耦合仿真模型,分析了不同风速、迎角下柔性椭圆翼型的周围流场、变形以及气动性能。仿真结果表明,较刚性翼型,柔性翼型延缓了尾涡脱落时间,有效降低升力扰动振荡频率;柔性翼型显著抑制了尾流流场的扰动,降低升力扰动振荡幅值,合适的弹性模量翼型使得扰动振荡完全消除。研究结果可为软飞行器气动设计提供参考。

  • 图  1  椭圆翼型几何模型:(a)流体域几何尺寸;(b)椭圆翼型几何尺寸

    Figure  1.  The geometric model for the elliptical airfoil: (a) geometric sizes of the fluid domain; (b) geometric sizes of the elliptical airfoil

    图  2  流体网格划分:(a)整体网格划分;(b)壁面附近网格加密处理

    Figure  2.  Meshing of the fluid domain: (a) meshing of the whole model; (b) mesh refinement near the wall

    图  3  刚性翼型流场流速分布:(a)速度云图;(b)压力云图

    注 为了解释图中的颜色,读者可以参考本文的电子网页版本,后同。

    Figure  3.  Characteristics of the flow field around the rigid airfoil: (a) the velocity contour; (b) the pressure contour

    图  4  刚性翼型升力与Pesavento和Wang[10]的数值计算结果对比

    Figure  4.  Comparison of lift forces of the rigid airfoil to the numerical results of Pesavento and Wang[10]

    图  5  不同迎角下的刚性翼型流场速度云图

    Figure  5.  Velocity contours of the flow field around the rigid airfoil at different attack angles

    图  6  不同迎角下的刚性翼型流场压力云图

    Figure  6.  Pressure contours of the flow field around the rigid airfoil at different attack angles

    图  7  不同风速下刚性翼型的升力、阻力及升阻比:(a)升力;(b)阻力;(c)升阻比

    Figure  7.  Lift forces, drag forces and lift-drag ratios of the rigid airfoil at different wind speeds: (a) lift forces; (b) drag forces; (c) lift-drag ratios

    图  8  柔性椭圆翼型有限元模型:(a)网格划分;(b)流固耦合面与固定面

    Figure  8.  The finite element model for the flexible elliptical airfoil: (a) the meshing; (b) the fluid-solid coupling and the fixed surface

    图  9  不同弹性模量的柔性翼型流场速度云图

    Figure  9.  Velocity contours of the flow field around the flexile airfoil with different Young’s moduli

    图  10  不同弹性模量的柔性翼型流场压力云图

    Figure  10.  Pressure contours of the flow field around the flexile airfoil with different Young’s moduli

    图  11  不同弹性模量的柔性翼型位移云图

    Figure  11.  Deformation contours of the flexile airfoil with different Young’s moduli

    图  12  柔性翼型的升力和阻力:(a)升力;(b)阻力

    Figure  12.  Lift forces and drag forces of the flexible airfoil: (a) lift forces; (b) drag forces

    图  13  不同迎角下的刚性翼型(左)与柔性翼型(右)的周围流场

    Figure  13.  Velocity contours of the fluid field around the rigid (left) and the flexible (right) airfoil with different attack angles

    图  14  柔性翼型的升力、阻力及升阻比随迎角变化:(a)升力;(b)阻力;(c)升阻比

    Figure  14.  Lift forces, drag forces and lift-drag ratios of the flexible airfoil vs. the attack angle: (a) lift forces; (b) drag forces; (c) lift-drag ratios

  • [1] 孙茂, 吴江浩. 昆虫飞行的高升力机理和能耗[J]. 北京航空航天大学学报, 2003, 29(11): 970-977. (SUN Mao, WU Jianghao. Unsteady lift mechanisms and energetic in flying insects[J]. Journal of Beijing University of Aeronautics and Astronautics, 2003, 29(11): 970-977.(in Chinese) doi: 10.3969/j.issn.1001-5965.2003.11.004
    [2] ELLINGTON C P, BERG C V D, WILLMOTT A P, et al. Leading-edge vortices in insect flight[J]. Nature, 1996, 384(6610): 626-630. doi: 10.1038/384626a0
    [3] DICKINSON M H, LEHMANN F O, SANE S P. Wing rotation and the aerodynamic basis of insect flight[J]. Science, 1999, 284(5422): 1954-1960. doi: 10.1126/science.284.5422.1954
    [4] TANG J, VIIERU D, SHYY W. A study of aerodynamics of low Reynolds number flexible airfoils[C]//37th AIAA Fluid Dynamics Conference and Exhibit. Miami, USA, 2007.
    [5] VISBAL M R, GORDNIER R E, GALBRAITH M C. High-fidelity simulations of moving and flexible airfoils at low Reynolds numbers[J]. Experiments in Fluids, 2009, 46(5): 903-922. doi: 10.1007/s00348-009-0635-4
    [6] 张兴伟, 周超英, 谢鹏. 扑翼柔性变形对悬停气动特性影响的数值研究[J]. 哈尔滨工业大学学报, 2012, 44(1): 115-119.

    ZHANG Xingwei, ZHOU Chaoying, XIE Peng. Numerical study on the effect of flapping wing deformation on aerodynamic performance in hovering flight[J]. Journal of Harbin Institute of Technology, 2012, 44(1): 115-119. (in Chinese)
    [7] 王姝歆, 周建华, 颜景平. 微小型仿生飞行机器人柔性翅的仿生设计与实验研究[J]. 实验流体力学, 2006, 20(1): 75-79. (WANG Shuxin, ZHOU Jianhua, YAN Jingping. Bionic design and experiment on flexible wings of a bionic flying micro-robot[J]. Journal of Experiments in Fluid Mechanics, 2006, 20(1): 75-79.(in Chinese) doi: 10.3969/j.issn.1672-9897.2006.01.018
    [8] KANG W, ZHANG J Z, LEI P F, et al. Computation of unsteady viscous flow around a locally flexible airfoil at low Reynolds number[J]. Journal of Fluids and Structures, 2014, 46: 42-58. doi: 10.1016/j.jfluidstructs.2013.12.010
    [9] 陶真新, 李绍斌, 宋西镇. 低雷诺数下柔性翼型气动性能分析[J]. 力学与实践, 2017, 39(2): 145-151.

    TAO Zhenxin, LI Shaobin, SONG Xizhen. The aerodynamic performance of a flexible airfoil at low Reynolds number[J]. Mechanics in Engineering, 2017, 39(2): 145-151. (in Chinese)
    [10] PESAVENTO U, WANG Z J. Flapping wing flight can save aerodynamic power compared to steady flight[J]. Physical Review Letter, 2009, 103(11): 118102. doi: 10.1103/PhysRevLett.103.118102
    [11] 杨金广, 吴虎. 双方程k-ω SST湍流模型的显式耦合求解及其在叶轮机械中的应用[J]. 航空学报, 2014, 35(1): 116-124. (YANG Jinguang, WU Hu. Explicit coupled solution of two-equation k-ω SST turbulence model and its application in turbomachinery flow simulation[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1): 116-124.(in Chinese)
    [12] MENTER F R. Zonal two equation k-ω turbulence models for aerodynamic flows[C]//AIAA 23rd Fluid Dynamics, Plasmadynamics, and Leaders Conference. Orlando, USA, 1993.
  • 加载中
图(14)
计量
  • 文章访问数:  1057
  • HTML全文浏览量:  462
  • PDF下载量:  104
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-05
  • 修回日期:  2022-05-16
  • 网络出版日期:  2022-05-26
  • 刊出日期:  2022-05-01

目录

    /

    返回文章
    返回