留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类随机微分方程的随机源反演方法和性质

陈琛 冯晓莉 陈汉章

陈琛, 冯晓莉, 陈汉章. 一类随机微分方程的随机源反演方法和性质[J]. 应用数学和力学, 2023, 44(7): 847-856. doi: 10.21656/1000-0887.430170
引用本文: 陈琛, 冯晓莉, 陈汉章. 一类随机微分方程的随机源反演方法和性质[J]. 应用数学和力学, 2023, 44(7): 847-856. doi: 10.21656/1000-0887.430170
CHEN Chen, FENG Xiaoli, CHEN Hanzhang. The Random Source Inverse Method and Properties for a Class of Stochastic Differential Equations[J]. Applied Mathematics and Mechanics, 2023, 44(7): 847-856. doi: 10.21656/1000-0887.430170
Citation: CHEN Chen, FENG Xiaoli, CHEN Hanzhang. The Random Source Inverse Method and Properties for a Class of Stochastic Differential Equations[J]. Applied Mathematics and Mechanics, 2023, 44(7): 847-856. doi: 10.21656/1000-0887.430170

一类随机微分方程的随机源反演方法和性质

doi: 10.21656/1000-0887.430170
基金项目: 

陕西省自然科学基础研究计划项目 2023-JC-YB-054

中央高校基本科研业务费 XJS220702

详细信息
    作者简介:

    陈琛(1998—),男,硕士(E-mail: c.chen@stu.xidian.edu.cn)

    陈汉章(2000—),男(E-mail: hzchen2000@foxmail.com)

    通讯作者:

    冯晓莉(1981—),女,博士(通讯作者. E-mail: xiaolifeng@xidian.edu.cn)

  • 中图分类号: O175.26

The Random Source Inverse Method and Properties for a Class of Stochastic Differential Equations

  • 摘要: 该文考虑了一类由分式Brown运动驱动的随机微分方程的随机源反演方法及其性质,其中分式Brown运动对应的Hurst参数H∈(0, 1).该问题可由很多随机模型转化而得,是一种比较广泛的随机问题.对于正问题,通过常数变易法得到方程的温和解,根据温和解的统计性质讨论其适定性.对于反问题,根据终止时刻的随机数据的统计量反演随机源项的部分统计量,证明了反演的唯一性,并讨论了当a(x)在不同范围时反问题的稳定性情况.
  • [1] GROETSH C W. 反问题: 大学生的科技活动[M]. 程晋, 谭永基, 刘继军, 译. 北京: 清华大学出版社, 2006.

    GROETSH C W. Inverse Problem: Activities for Undergraduates[M]. CHENG Jin, TAN Yongji, LIU Jijun, transl. Beijing: Tsinghua University Press, 2006. (in Chinese)
    [2] 刘继军. 不适定问题的正则化方法及应用[M]. 北京: 科学出版社, 2005.

    LIU Jijun. Regularization Methods and Applications for Ill-Posed Problems[M]. Beijing: Science Press, 2005. (in Chinese)
    [3] 王彦飞. 反演问题的计算方法及其应用[M]. 北京: 高等教育出版社, 2007.

    WANG Yanfei. Computational Methods for Inversion Problems and Their Applications[M]. Beijing: Higher Education Press, 2007. (in Chinese)
    [4] 耿肖肖, 程浩. 一类球型区域上变系数反向热传导问题[J]. 应用数学和力学, 2021, 42(7): 723-734. doi: 10.21656/1000-0887.410297

    GENG Xiaoxiao, CHENG Hao. The backward heat conduction problem with variable coefficients in a spherical domain[J]. Applied Mathematics and Mechanics, 2021, 42(7): 723-734. (in Chinese) doi: 10.21656/1000-0887.410297
    [5] 柳冕, 程浩, 石成鑫. 一类非线性时间分数阶扩散方程反问题的变分型正则化[J]. 应用数学和力学, 2022, 43(3): 341-352. doi: 10.21656/1000-0887.420168

    LIU Mian, CHENG Hao, SHI Chengxin. Variational regularization of the inverse problem of a class of nonlinear time-fractional diffusion equations[J]. Applied Mathematics and Mechanics, 2022, 43(3): 341-352. (in Chinese) doi: 10.21656/1000-0887.420168
    [6] RASCANU A, NUALART D. Differential equations driven by fractional Brownian motion[J]. Collectanea Mathematica , 2002, 53(1): 55-81.
    [7] BAI L H, MA J. Stochastic differential equations driven by fractional Brownian motion and Poisson point process[J]. Bernoulli, 2015, 21(1): 303-334.
    [8] MIJENA J B, NANE E. Space-time fractional stochastic partial differential equations[J]. Stochastic Processes and Their Applications, 2015, 125(9): 3301-3326. doi: 10.1016/j.spa.2015.04.008
    [9] TINDEL S, TUDOR C A, VIENS F. Stochastic evolution equations with fractional Brownian motion[J]. Probability Theory and Related Fields, 2003, 127(2): 186-204. doi: 10.1007/s00440-003-0282-2
    [10] LI P J, WANG X. Inverse random source scattering for the Helmholtz equation with attenuation[J]. SIAM Journal of Applied Mathematics, 2021, 81: 485-506. doi: 10.1137/19M1309456
    [11] LI P J, WANG X. An inverse random source problem for Maxwell's equations[J]. Multiscale Modeling & Simulation, 2021, 19(1): 25-45.
    [12] LI P J, WANG X. An inverse random source problem for the one-dimensional Helmholtz equation with attenuation[J]. Inverse Problems, 2021, 37: 015009. doi: 10.1088/1361-6420/abcd43
    [13] NIE Daxin, DENG Weihua. An inverse random source problem for the time-space fractional diffusion equation driven by fractional Brownian motion[J/OL]. Journal of Inverse and Ill-Posed Problems, 2023(2023-02-28)[2023-06-28]. https://doi.org/10.1515/jiip-2021-0061.
    [14] FENG X L, ZHAO M X, LI P J, et al. An inverse source problem for the stochastic wave equation[J]. Inverse Problems and Imaging, 2022, 16: 397-415. doi: 10.3934/ipi.2021055
    [15] FENG X L, LI P J, WANG X. An inverse random source problem for the time fractional diffusion equation driven by a fractional Brownian motion[J]. Inverse Problems, 2020, 36(4): 045008.
    [16] 赵丽志, 冯晓莉. 一类随机对流扩散方程的反源问题[J]. 应用数学和力学, 2022, 43(12): 1392-1401. doi: 10.21656/1000-0887.420399

    ZHAO Lizhi, FENG Xiaoli. An inverse source problem for the stochastic convection-diffusion equation[J]. Applied Mathematics and Mechanics, 2022, 43(12): 1392-1401. (in Chinese) doi: 10.21656/1000-0887.420399
    [17] NUALART D. The Malliavin Calculus and Related Topics[M]//Probability and Its Applications. Springer, 1996.
  • 加载中
计量
  • 文章访问数:  474
  • HTML全文浏览量:  157
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-19
  • 修回日期:  2022-06-28
  • 刊出日期:  2023-07-01

目录

    /

    返回文章
    返回