[1] |
叶其孝, 李正元, 王明新, 等. 反应扩散方程引论[M]. 2版. 北京: 科学出版社, 2011.YE Qixiao, LI Zhengyuan, WANG Mingxin, et al. Introduction to Reaction-Diffusion Equations[M]. 2nd ed. Beijing: Science Press, 2011. (in Chinese))
|
[2] |
HUANG J H, ZOU X F. Travelling wave fronts in diffusive and cooperative Lotka-Volterra system with delays[J]. Journal of Mathematical Analysis and Applications, 2002, 271: 455-466. doi: 10.1016/S0022-247X(02)00135-X
|
[3] |
WU J H, ZOU X F. Traveling wave fronts of reaction diffusion systems with delay[J]. Journal of Dynamics and Differential Equations, 2001, 13: 651-687. doi: 10.1023/A:1016690424892
|
[4] |
LV G Y, WANG M X. Traveling wave front in diffusive and competitive Lotka-Volterra system with delays[J]. Nonlinear Analysis: Real World Applications, 2010, 11(3): 1323-1329. doi: 10.1016/j.nonrwa.2009.02.020
|
[5] |
GUO J S, WU C H. Traveling wave front for a two-component lattice dynamical system arising in competitionmodels[J]. Journal of Differential Equations, 2012, 252(8): 4357-4391. doi: 10.1016/j.jde.2012.01.009
|
[6] |
LI K, HUANG J H, LI X, et al. Traveling wave fronts in a delayed lattice competitive system[J]. Applicable Analysis, 2017, 97(6): 982-999.
|
[7] |
张秋, 陈广生. 一类具有非线性发生率与时滞的非局部扩散SIR模型的临界波的存在性[J]. 应用数学和力学, 2019, 40(7): 713-727. doi: 10.21656/1000-0887.390208ZHANG Qiu, CHEN Guangsheng. Existence of critical traveling waves for nonlocal dispersal SIR models with delay and nonlinear incidence[J]. Applied Mathematics and Mechanics, 2019, 40(7): 713-727. (in Chinese)) doi: 10.21656/1000-0887.390208
|
[8] |
谷雨萌, 黄明迪. 一类时间周期的时滞竞争系统行波解的存在性[J]. 应用数学和力学, 2020, 41(6): 658-668. doi: 10.21656/1000-0887.400275GU Yumeng, HUANG Mingdi. Existence of periodic traveling waves for time-periodic Lotka-Volterra competition systems with delay[J]. Applied Mathematics and Mechanics, 2020, 41(6): 658-668. (in Chinese)) doi: 10.21656/1000-0887.400275
|
[9] |
BRAMSON M. Convergence of Solutions of the Kolmogorov Equation to Traveling Waves[M]. Memoirs of the American Mathematical Society, 1983.
|
[10] |
KIRCHGÄSSNER K. On the nonlinear dynamics of travelling fronts[J]. Journal of Differential Equations, 1992, 96(2): 256-278. doi: 10.1016/0022-0396(92)90153-E
|
[11] |
TSAI J C, SNEYD J. Existence and stability of traveling waves in bufferedsystems[J]. SIAM Journal on Mathematical Analysis, 2005, 66: 237-265.
|
[12] |
MA S W, ZHAO X Q. Global asymptotic stability of minimal fronts in monostable lattice equations[J]. Discrete and Continuous Dynamical Systems, 2008, 21: 259-275. doi: 10.3934/dcds.2008.21.259
|
[13] |
WANG Y, CAO X Y, MA Z H, et al. Global stability of noncritical traveling front solutions of Fisher-type equations with degenerate nonlinearity[J]. Journal of Mathematical Physics, 2021, 62(5): 051506. doi: 10.1063/5.0043893
|
[14] |
ZHOU Y H, YAN Z M, JI S G. Global stability of traveling waves with non-monotonicity for population dynamicsmodel[J]. Tokyo Journal of Mathematics, 2021, 44: 383-396.
|
[15] |
LIU C C, MEI M, YANG J Q. Global stability of traveling waves for nonlocal time-delayed degenerate diffusion equation[J]. Journal of Differential Equations, 2022, 306: 60-100. doi: 10.1016/j.jde.2021.10.027
|
[16] |
SCHAAF K W. Asymptotic behavior and traveling wave solutions for parabolic functional differentialequations[J]. Transactions of the American Mathematical Society, 1987, 302: 587-615.
|
[17] |
MEI M, SO J W H, LI M Y, et al. Asymptotic stability of traveling waves for the Nicholson's blowflies equation with diffusion[J]. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 2004, 134(3): 579-594. doi: 10.1017/S0308210500003358
|
[18] |
LIN C K, MEI M. On travellingwavefronts of the Nicholson's blowflies equations with diffusion[J]. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 2010, 140(1): 135-152. doi: 10.1017/S0308210508000784
|
[19] |
MEI M, LIN C K, LIN C T, et al. Traveling wavefronts for time-delayed reaction-diffusion equation, Ⅰ: local nonlinearity[J]. Journal of Differential Equations, 2009, 247(2): 495-510. doi: 10.1016/j.jde.2008.12.026
|
[20] |
MEI M, LIN C K, LIN C T, et al. Traveling wavefronts for time-delayed reaction-diffusion equation, Ⅱ: nonlocal nonlinearity[J]. Journal of Differential Equations, 2009, 247(2): 511-529. doi: 10.1016/j.jde.2008.12.020
|
[21] |
YU Z X, XU F, ZHANG W G. Stability of invasion traveling waves for a competition system with nonlocaldispersals[J]. Applicable Analysis, 2017, 96(7): 1107-1125. doi: 10.1080/00036811.2016.1178242
|
[22] |
ZHANG G B, DONG F D, LI W T. Uniqueness and stability of traveling waves for a three-species competition system with nonlocaldispersal[J]. Discrete and Continuous Dynamical Systems(Series B), 2019, 24(4): 1511-1541. doi: 10.3934/dcdsb.2018218
|
[23] |
MA S, ZOU X F. Existence, uniqueness and stability of traveling waves in a discrete reaction-diffusionmonostable equation with delay[J]. Journal of Differential Equations, 2005, 217(1): 54-87. doi: 10.1016/j.jde.2005.05.004
|
[24] |
GUO S J, ZIMMER J. Stability of travelingwavefronts in discrete reaction-diffusion equations with nonlocal delay effects[J]. Nonlinearity, 2015, 28(2): 463-492. doi: 10.1088/0951-7715/28/2/463
|
[25] |
HSU C H, LIN J J, YANG T S. Stability for monostable wave fronts of delayed lattice differential equations[J]. Journal of Dynamics and Differential Equations, 2017, 29: 323-342. doi: 10.1007/s10884-015-9447-9
|
[26] |
YU Z X, HSU C H. Wave propagation and its stability for a class of discrete diffusion systems[J]. Zeitschrift für Angewandte Mathematik und Physik, 2020, 71: 194. doi: 10.1007/s00033-020-01423-4
|
[27] |
CHEN G S, WU S L, HSU C H. Stability of travelingwavefronts for a discrete diffusive competition system with three species[J]. Journal of Mathematical Analysis and Applications, 2019, 474(2): 909-930. doi: 10.1016/j.jmaa.2019.01.079
|
[28] |
SU T, ZHANG G B. Stability of travelingwavefronts for a three-component Lotka-Volterra competition system on a lattice[J]. Electronic Journal of Differential Equations, 2018, 57(2018): 1-16.
|
[29] |
HSU C H, LIN J J. Stability analysis of traveling wave solutions for lattice reaction-diffusion equations[J]. Discrete and Continuous Dynamical Systems(Series B), 2020, 25(5): 1757-1774. doi: 10.3934/dcdsb.2020001
|
[30] |
朱福国. 格上时滞Lotka-Volterra合作系统的波前解[J]. 生物数学学报, 2012, 27(1): 150-156. https://www.cnki.com.cn/Article/CJFDTOTAL-SWSX201201018.htmZHU Fuguo. Traveling wavefrons of delayed Lotka-Volterra system on lattice[J]. Journal of Biomathematics, 2012, 27(1): 150-156. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SWSX201201018.htm
|