留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

导电压头作用下的多层功能梯度压电材料涂层二维接触问题研究

代文鑫 刘铁军

代文鑫,刘铁军. 导电压头作用下的多层功能梯度压电材料涂层二维接触问题研究 [J]. 应用数学和力学,2023,44(3):282-303 doi: 10.21656/1000-0887.430187
引用本文: 代文鑫,刘铁军. 导电压头作用下的多层功能梯度压电材料涂层二维接触问题研究 [J]. 应用数学和力学,2023,44(3):282-303 doi: 10.21656/1000-0887.430187
DAI Wenxin, LIU Tiejun. Investigation on the 2D Contact of Multilayer Functionally Graded Piezoelectric Material Coating Under Conducting Indenters[J]. Applied Mathematics and Mechanics, 2023, 44(3): 282-303. doi: 10.21656/1000-0887.430187
Citation: DAI Wenxin, LIU Tiejun. Investigation on the 2D Contact of Multilayer Functionally Graded Piezoelectric Material Coating Under Conducting Indenters[J]. Applied Mathematics and Mechanics, 2023, 44(3): 282-303. doi: 10.21656/1000-0887.430187

导电压头作用下的多层功能梯度压电材料涂层二维接触问题研究

doi: 10.21656/1000-0887.430187
基金项目: 国家自然科学基金(12062019);内蒙古自然科学基金(2020MS01022)
详细信息
    作者简介:

    代文鑫(1997—),男,硕士生(E-mail:951954404@qq.com

    刘铁军(1978—),男,教授,博士生导师(通讯作者. E-mail:liutiejun6204@163.com

  • 中图分类号: O34

Investigation on the 2D Contact of Multilayer Functionally Graded Piezoelectric Material Coating Under Conducting Indenters

  • 摘要:

    考虑了材料参数可按照任意函数形式变化的功能梯度压电材料(FGPM)涂层在不同形状导电压头作用下的接触问题,研究了梯度系数对功能梯度压电涂层接触力学行为的影响。建立了多层功能梯度压电材料涂层模型,运用了Fourier积分变换和传递矩阵将多层功能梯度压电材料涂层的接触问题转化为奇异积分方程。利用Gauss-Chebyshev数值计算方法,得到了多层功能梯度压电材料涂层-基底结构在刚性导电平压头和圆柱形压头作用下的表面应力分布和电荷分布。利用数值解,分析了材料参数按照不同变化形式的FGPM涂层对最大压痕和电势的影响,还分析了功能梯度压电涂层内部的应力和电位移分布。研究结果表明,功能梯度压电材料参数的不同变化形式对结构的接触性能具有重要的影响。

  • 图  1  法向集中线载荷P和正集中线电荷Q作用在FGPM涂层半平面

    Figure  1.  The FGPM coated half-plane subjected to normal concentrated line load P and positive concentrated line electric charge Q

    图  2  多层功能梯度压电涂层模型

    Figure  2.  The multi-layer model for the functional gradient piezoelectric coating

    图  3  FGPM涂层-基底结构与刚性导电压头的无摩擦接触

    Figure  3.  Frictionless contact between an FGPM coated half-plane and a conducting rigid indenter

    图  4  FGPM涂层与导电平压头的无摩擦接触问题

    Figure  4.  The frictionless contact problem between the FGPM coated half-plane and the conducting flat indenter

    图  5  FGPM涂层与导电圆柱压头的无摩擦接触问题

    Figure  5.  The frictionless contact problem between the FGPM coateded half-plane and the conducting cylindrical indenter

    图  6  应力分布$p\left( x \right)$和电荷分布$q\left( x \right)$求解过程的流程图

    Figure  6.  The flowchart for the procedure of solution to obtain stress distribution $p\left( x \right)$ and charge distribution $q\left( x \right)$

    图  7  不同分层数对多层压电材料涂层在导电平压下的压力分布$p\left( x \right)$和电荷分布$q\left( x \right)$的影响

    注 为了解释图中的颜色,读者可以参考本文的电子网页版本,后同。

    Figure  7.  Effects of the number of layers on pressure distribution $p\left( x \right)$ and the charge distribution $q\left( x \right)$ of the multi-layer piezoelectric model under the conducting flat indenter

    图  8  平压头作用下,本文计算结果与文献[16]结果的比较:(a)接触应力分布$p\left( x \right)$;(b)电荷分布$q\left( x \right)$

    Figure  8.  Comparison between the present results and the results from ref. [16] under the flat indenter: (a) contact stress distribution $p\left( x \right)$; (b) charge distribution $q\left( x \right)$

    图  9  圆柱压头作用下,本文计算结果与文献[16]结果的比较:(a)接触应力分布$p\left( x \right)$;(b)电荷分布$q\left( x \right)$

    Figure  9.  Comparison between the present results and the results from ref. [16] under the cylindrical indenter: (a) contact stress distribution $p\left( x \right)$; (b) charge distribution $q\left( x \right)$

    图  10  $k = 8/1$时,导电平压头作用下的梯度指数$n$对接触应力$p\left( x \right)$和电荷分布$q\left( x \right)$的影响

    Figure  10.  Effects of gradient index $n$ on distribution of contact stress $p\left( x \right)$ and electric charge $q\left( x \right)$ under the conducting flat indenter for $k = 8/1$

    图  11  $k = 1/8$时,导电平压头作用下的梯度指数$n$对接触应力$p\left( x \right)$和电荷分布$q\left( x \right)$的影响

    Figure  11.  Effects of gradient index $n$ on distribution of contact stress $p\left( x \right)$ and electric charge $q\left( x \right)$ under the conducting flat indenter for $k = 1/8$

    图  12  $k = 8/1$时,$n$值变化对压力与压痕曲线、压力与电势曲线、电荷与位移曲线和电荷与电势曲线的影响

    Figure  12.  Effects of $n$ on the curve of applied force vs. indentation, the curve of applied force vs. electrical potential, the curve of electric charge vs. indentation and the curve of electrical charge vs. the electrical potential for $k = 8/1$

    图  13  $k = 1/8$时,$n$值变化对压力与压痕曲线、压力与电势曲线、电荷与位移曲线和电荷与电势曲线的影响

    Figure  13.  Effects of $n$ on the curve of applied force vs. indentation, the curve of applied force vs. electrical potential, the curve of electric charge vs. indentation and the curve of electrical charge vs. the electrical potential for $k = 1/8$

    图  14  $k = 8/1$时,$n$值变化对界面处($z = 0$)竖向应力分布${\sigma _z}$和电位移${D_z}$的影响

    Figure  14.  Effects of $n$ on vertical stress distribution ${\sigma _z}$ and electric displacement ${D_z}$ at interface ($z = 0$) for $k = 8/1$

    图  15  $k = 1/8$时,$n$值变化对界面处($z = 0$)竖向应力分布${\sigma _z}$和电位移${D_z}$的影响

    Figure  15.  Effects of $n$ on vertical stress distribution ${\sigma _z}$ and electric displacement ${D_z}$ at interface ($z = 0$) for $k = 1/8$

    图  16  $k = 8/1$时,$n$值变化对沿涂层厚度方向($x = 0$)的应力${\sigma _z}$和电位移${D_z}$的影响

    Figure  16.  Effects of $n$ on stress ${\sigma _z}$ and electrical displacement ${D_z}$ at $x = 0$ along the thickness direction of coating for $k = 8/1$

    图  17  $k = 1/8$时,$n$值变化对沿涂层厚度方向($x = 0$)的应力${\sigma _z}$和电位移${D_z}$的影响

    Figure  17.  Effects of $n$ on stress ${\sigma _z}$ and electrical displacement ${D_z}$ at $x = 0$ along the thickness direction of coating for $k = 1/8$

    图  18  $k = 8/1$$k = 1/8$的情况下,$n$值对$P {\text{-}} a$关系图的影响

    Figure  18.  Effects of $n$ on relation $P$ vs. $a$ for $k = 8/1$ and $k = 1/8$

    图  19  $k = 8/1$时,$n$值变化对导电圆柱压头接触应力$p\left( x \right)$和电荷分布$q\left( x \right)$的影响

    Figure  19.  Effects of gradient index $n$ on distribution of contact stress $p\left( x \right)$ and electric charge $q\left( x \right)$ for $k = 8/1$

    图  20  $k = 1/8$时,$n$值变化对导电圆柱压头接触应力$p\left( x \right)$和电荷分布$q\left( x \right)$的影响

    Figure  20.  Effects of gradient index $n$ on distribution of contact stress $p\left( x \right)$ and electric charge $q\left( x \right)$ for $k = 1/8$

    图  21  $k = 8/1$时,$n$值变化对压力与压痕曲线、压力与电势曲线、电荷与位移曲线和电荷与电势曲线的影响

    Figure  21.  Effects of $n$ on the curve of applied force vs. indentation, the curve of applied force vs. electrical potential, the curve of electric charge vs. indentation and the curve of electrical charge vs. electrical potential for $k = 8/1$

    图  22  $k = 1/8$时,$n$值变化压力与压痕曲线、压力与电势曲线、电荷与位移曲线和电荷与电势曲线的影响

    Figure  22.  Effects of $n$ on the curve of applied force vs. indentation, the curve of applied force vs. electrical potential, the curve of electric charge vs. indentation and the curve of electrical charge vs. electrical potential for $k = 1/8$

    表  1  压电陶瓷PZT-4的材料参数

    Table  1.   Material properties of PZT-4

    $ c_{11, N + 1} $/GPa$ G_{13, N + 1} $/GPa$ c_{33, N + 1} $/GPa$ C_{44, N + 1} $/GPa$ e_{31, N + 1} $/(C/m2)$ e_{33, N + 1} $/(C/m2)$ e_{15, N + 1} $/(C/m2)$ \varepsilon_{11, N + 1} $/(C/(V·m))$ \varepsilon_{33, N + 1} $/(C/(V·m))
    13974.311525.6−5.215.112.76.461×10−95.62×10−9
    下载: 导出CSV
  • [1] 李青山, 刘正兴, 杨耀文. 压电材料在智能结构形状和振动控制中的应用[J]. 力学进展, 1999, 29(1): 66-76 doi: 10.6052/1000-0992-1999-1-J1998-056

    LI Qingshan, LIU Zhengxing, YANG Yaowen. The applications of piezoelectric materials on shape control and vibration control of smart structures[J]. Advances in Mechanics, 1999, 29(1): 66-76.(in Chinese) doi: 10.6052/1000-0992-1999-1-J1998-056
    [2] MASON W P. Piezoelectricity, its history and application[J]. The Journal of the Acoustical Society of America, 1980, 70(6): 1561-1566.
    [3] 张涛, 孙立宁, 蔡鹤皋. 压电陶瓷基本特性研究[J]. 光学精密工程, 1998, 6(5): 26-32 doi: 10.3321/j.issn:1004-924X.1998.05.005

    ZHANG Tao, SUN Lining, CAI Hegao. Study on the fundament characteristics of piezoelectric element[J]. Optics and Precision Engineering, 1998, 6(5): 26-32.(in Chinese) doi: 10.3321/j.issn:1004-924X.1998.05.005
    [4] 路桂华, 赵曼, 岳强. 各向异性压电介质摩擦接触界面波动特性分析[J]. 应用数学和力学, 2017, 38(4): 421-431

    LU Guihua, ZHAO Man, YUE Qiang. Characteristics of elastic waves through frictional contact interfaces between 2 anisotropic piezoelectric materials[J]. Applied Mathematics and Mechanics, 2017, 38(4): 421-431.(in Chinese)
    [5] 刘兴伟, 李星, 汪文帅. 一维六方压电准晶中正n边形孔边裂纹的反平面问题[J]. 应用数学和力学, 2020, 41(7): 713-724

    LIU Xingwei, LI Xing, WANG Wenshuai. The anti-plane problem of regular n-polygon holes with radial edge cracks in 1D hexagonal piezoelectric quasicrystals[J]. Applied Mathematics and Mechanics, 2020, 41(7): 713-724.(in Chinese)
    [6] 孙文静, 王毅泽. 压电超材料梁中弹性波带隙特性与界面传输的主动控制[J]. 应用数学和力学, 2022, 43(1): 14-25

    SUN Wenjing, WANG Yize. Active control on band gap properties and interface transmission of elastic waves in piezoelectric metamaterial beams[J]. Applied Mathematics and Mechanics, 2022, 43(1): 14-25.(in Chinese)
    [7] SOSA H A, CASTRO M A. On concentrated loads at the boundary of a piezoelectric half-plane[J]. Journal of the Mechanics and Physics of Solids, 1994, 42(7): 1105-1122. doi: 10.1016/0022-5096(94)90062-0
    [8] WANG Z K, ZHENG B L. The general solution of three-dimensional problem in piezoelectric media[J]. International Journal of Solids and Structures, 1995, 32(1): 105-115. doi: 10.1016/0020-7683(94)00101-2
    [9] DING H J, CHEN B, LIAN G. General solutions for coupled equations for piezoelectric media[J]. International Journal of Solids & Structures, 1996, 33(16): 2283-2298.
    [10] CHEN W Q, SHIOYA T, DING H J. The elasto-electric field for a rigid conical punch on a transversely isotropic piezoelectric half-space[J]. Journal of Applied Mechanics, 1999, 66(3): 764-771. doi: 10.1115/1.2791738
    [11] 周坤丽, 匡震邦. 压电材料中的表面电极[J]. 上海交通大学学报, 2005, 39(2): 293-296 doi: 10.3321/j.issn:1006-2467.2005.02.029

    ZHOU Kunli, KUANG Zhenbang. Surface electrode problem in piezoelectric materials[J]. Journal of Shanghai Jiaotong University, 2005, 39(2): 293-296.(in Chinese) doi: 10.3321/j.issn:1006-2467.2005.02.029
    [12] LIU T J, WANG Y S. Axisymmetric frictionless contact problem of a functionally graded coating with exponentially varying modulus[J]. Acta Mechanica, 2008, 199: 151-165. doi: 10.1007/s00707-007-0556-3
    [13] WU C C M, KAHN M, MOY W. Piezoelectric ceramics with functional gradients: a new application in material design[J]. Journal of the American Ceramic Society, 1996, 79(3): 809-812.
    [14] ZHU X H, MENG Z. Operational principle, fabrication and displacement characteristics of a functionally gradient piezoelectric ceramic actuator[J]. Sensors and Actuators A: Physical, 1995, 48(3): 169-176. doi: 10.1016/0924-4247(95)00996-5
    [15] KE L L, YANG J, KITIPORNCHAI S, et al. Frictionless contact analysis of a functionally graded piezoelectric layered half-plane[J]. Smart Materials and Structures, 2008, 17(2): 025003. doi: 10.1088/0964-1726/17/2/025003
    [16] KE L L, YANG J, KITIPORNCHAI S, et al. Electro-mechanical frictionless contact behavior of a functionally graded piezoelectric layered half-plane under a rigid punch[J]. International Journal of Solids and Structures, 2008, 45(11/12): 3313-3333.
    [17] LIU T J, ZHANG C Z, WANG Y S. Analysis of axisymmetric indentation of functionally graded piezoelectric coating or substrate systems under an insulator indenter[J]. Journal of Intelligent Material Systems and Structures, 2017, 28(1): 23-34. doi: 10.1177/1045389X16642305
    [18] LIU T J, ZHANG C Z. Axisymmetric conducting indenter on a functionally graded piezoelectric coating[J]. International Journal of Mechanical Sciences, 2016, 115/116: 34-44. doi: 10.1016/j.ijmecsci.2016.06.008
    [19] LIU T J, LI P X, ZHANG C Z. On contact problem with finite friction for a graded piezoelectric coating under an insulating spherical indenter[J]. International Journal of Engineering Science, 2017, 121: 1-13. doi: 10.1016/j.ijengsci.2017.08.001
    [20] SU J, KE L L, WANG Y S. Axisymmetric partial slip contact of a functionally graded piezoelectric coating under a conducting punch[J]. Journal of Intelligent Material Systems and Structures, 2017, 28(14): 1925-1940. doi: 10.1177/1045389X16682849
    [21] 苏洁. 功能梯度压电材料的摩擦接触分析[D]. 博士学位论文. 北京: 北京交通大学, 2018.

    SU Jie. Frictional contact analysis of functionally graded piezoelectric materials[D]. PhD Thesis. Beijing: Beijing Jiaotong University, 2018. (in Chinese)
    [22] ERDOGAN F, GUPTA G D. On the numerical solution of singular integral equations[J]. Quarterly of Applied Mathematics, 1972, 29(4): 525-534. doi: 10.1090/qam/408277
    [23] GIANNAKOPOULOS A E, SURESH S. Theory of indentation of piezoelectric materials[J]. Acta Materialia, 1999, 47(7): 2153-2164. doi: 10.1016/S1359-6454(99)00076-2
  • 加载中
图(22) / 表(1)
计量
  • 文章访问数:  495
  • HTML全文浏览量:  345
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-06
  • 录用日期:  2023-01-27
  • 修回日期:  2022-10-27
  • 网络出版日期:  2023-03-10
  • 刊出日期:  2023-03-15

目录

    /

    返回文章
    返回