3D Fast Multipole Boundary Element Method Analysis of Heat Exchange Performance of Buried Pipe Groups
-
摘要: 基于三节点三角形线性单元,为克服单元跨叶子积分难题,将三维位势问题快速多极边界元法与几乎奇异积分的半解析算法相结合,实现了三维边界元法中几乎奇异积分的准确计算,该方法适用于U型地埋管薄体结构的换热分析. 在制冷、制热两种工况下研究了U型地埋管壁厚对换热量的影响,并进一步分析了管群间的热相互作用. 计算结果显示,当管壁导热系数一定时,管壁越厚,对管内流体和土壤之间的换热影响越大. 当钻孔间距一定时,管群中埋管数量越多,热干扰现象越强烈,提高管群换热量的主要措施是降低管群间热干扰. 因准确计算了几乎奇异积分,三维快速多极边界元法可以有效计算薄体和厚体耦合的三维热传导问题. 该文方法和分析结果可为地埋管换热器系统的工程应用提供参考.Abstract: Based on the 3-node triangular linear element and to overcome the element cross-leaf integration problem, a new 3D fast method was formulated for 3D potential problems through combination of the fast multipole boundary element method (FMBEM) with the semi-analytical algorithm of nearly singular integral, to realize the accurate calculation of the nearly singular integral in the 3D boundary element method (BEM). This method is applicable to the heat exchange of thin-wall structures of U-type buried pipe groups. In the cooling and heating conditions, the effects of the wall thickness of the U-type buried pipe group were analyzed by means of the new FMBEM, and the thermal interaction between multiple buried pipes was discussed. The calculation results show that, for a constant thermal conductivity of the pipe wall, the thicker the pipe wall is, the greater the effect on the heat exchange between the pipe fluid and the soil will be. For a constant borehole spacing, the bigger the number of buried pipes in a group is, the stronger the thermal interference between the pipes will be. The main strategy to increase the heat exchange of the pipe group is to reduce the thermal interference between the heat exchange pipes. Due to the accurate calculation of the nearly singular integral, the proposed 3D FMBEM can effectively solve the 3D heat exchange problems of thin-thick coupled bodies. This method and the results for the provide references for the engineering application of buried pipe heat exchangers.
-
表 1 地埋管换热器设计参数
Table 1. The U-tube buried pipe design parameters
number parameter name value unit 1 borehole depth 50 m 2 borehole radius 75 mm 3 U-tube pipe outer radius 16 mm 4 U-tube pipe inner radius 13 mm 5 shank spacing 100 mm 6 soil radius 1.5 m 7 U-tube (PE pipe) thermal conductivity 0.4 W/(m·℃) 8 fill material thermal conductivity 2.4 W/(m·℃) 9 ground thermal conductivity 2.0 W/(m·℃) 10 inlet water temperature in summer 35 ℃ 11 outlet water temperature in summer 32 ℃ 12 inlet water temperature in winter 7 ℃ 13 outlet water temperature in winter 10 ℃ 14 undisturbed ground temperature 18 ℃ 表 2 不同管壁厚度时地埋管单位井深换热量(单位: W/m)
Table 2. Heat transfer fluxes of buried pipes with different wall thicknesses (unit: W/m)
wall thickness cooling heating Qi Qo Q=i+Qo Qi Qo Q=Qi+Qo 0 -29.466 -17.230 -46.696 20.433 8.205 28.638 3 -28.081 -13.300 -41.381 20.061 5.300 25.361 6 -21.922 -15.910 -37.832 14.640 8.548 23.188 8 -18.118 -14.471 -32.589 11.826 8.147 19.973 10 -15.927 -13.017 -28.944 10.332 7.407 17.739 表 3 壁厚3 mm时4×4管群单位井深换热量(单位: W/m)
Table 3. Heat transfer fluxes of 4×4 pipe groups for a wall thickness of 3 mm (unti: W/m)
heat exchange cooling heating tube of №.① tube of №.② tube of №.③ tube of №.④ tube of №.① tube of №.② tube of №.③ tube of №.④ Qi -7.901 -10.999 -11.640 -14.856 6.055 8.218 8.390 10.352 Qo -1.530 -5.077 -5.637 -8.999 0.379 1.822 2.216 4.275 Q=Qi+Qo -9.431 -16.076 -17.277 -23.855 6.434 10.040 10.606 14.627 表 4 不考虑壁厚时4×4管群单位井深换热量(单位: W/m)
Table 4. Heat transfer fluxes of 4×4 pipe groups regardless of the wall thickness (unit: W/m)
heat exchange cooling heating tube of №.① tube of №.② tube of №.③ tube of №.④ tube of №.① tube of №.② tube of №.③ tube of №.④ Qi -9.768 -14.009 -13.776 -17.944 7.966 10.579 10.447 13.002 Qo -0.519 -3.829 -4.128 -8.281 2.320 0.337 0.535 3.079 Q=Qi+Qo -10.287 -17.838 -17.904 -26.225 10.286 10.916 10.982 16.081 -
[1] GUAN Y L, ZHAO X L, WANG G J. 3D dynamic numerical programming and calculation of vertical buried tube heat exchanger performance of ground source heat pumps under coupled heat transfer inside and outside of tube[J]. Energy & Buildings, 2017, 139: 186-196. [2] KERME E D, FUNG A S. Transient heat transfer simulation, analysis and thermal performance study of double U-tube borehole heat exchanger based on numerical heat transfer model[J]. Applied Thermal Engineering, 2020, 173: 115189. doi: 10.1016/j.applthermaleng.2020.115189 [3] 贺泽群, 于明志, 毛煜东. 基于负荷自适应分配的地埋管换热器传热分析[J]. 工程热物理学报, 2020, 41(8): 2044-2051. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB202008029.htmHE Zequn, YU Mingzhi, MAO Yudong. Heat transfer analysis of ground heat exchanger based on self adaption load distribution method[J]. Journal of Engineering Thermophysics, 2020, 41(8): 2044-2051. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB202008029.htm [4] 张荻, 郭帅, 谢永慧. 基于球窝结构冷却通道的强化传热数值及实验研究[J]. 应用数学和力学, 2014, 35(3): 254-263. doi: 10.3879/j.issn.1000-0887.2014.03.003ZHANG Di, GUO Shuai, XIE Yonghui. Numerical and experimental study of heat transfer enhancement based on the structure of cooling channels with dimples[J]. Applied Mathematics and Mechanics, 2014, 35(3): 254-263. (in Chinese) doi: 10.3879/j.issn.1000-0887.2014.03.003 [5] 朱利媛, 牛忠荣, 胡宗军. 地源热泵地埋管换热性能的边界元法分析[J]. 太阳能学报, 2015, 36(4): 936-942. https://www.cnki.com.cn/Article/CJFDTOTAL-TYLX201504027.htmZHU Liyuan, NIU Zhongrong, HU Zongjun. Boundary element analysis of heat transfer of buried pipes in GSHP[J]. Acta Energiae Solaris Sinica, 2015, 36(4): 936-942. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TYLX201504027.htm [6] LEI X B, ZHENG X H, DUAN C Y. Three dimensional numerical simulation of geothermal field of buried pipe group coupled with heat and permeable groundwater[J]. Energies, 2019, 12(19): 3698. doi: 10.3390/en12193698 [7] 李聪, 胡斌, 胡宗军, 等. 二维正交各向异性位势问题的高阶单元快速多极边界元法[J]. 力学学报, 2021, 53(4): 1038-1048. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202104010.htmLI Cong, HU Bin, HU Zongjun, et al. Analysis of 2D orthotropic potential problems using fast multipole boundary element method with higher order elements[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 1038-1048. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202104010.htm [8] 徐刚, 陈静, 王树齐, 等. 无奇异边界元法精度分析[J]. 上海交通大学学报, 2018, 52(7): 867-872. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201807019.htmXU Gang, CHEN Jing, WANG Shuqi, et al. The numerical accuracy of the desingularized boundary integral equation method[J]. Journal of Shanghai Jiaotong University, 2018, 52(7): 867-872. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201807019.htm [9] 刘静, 姚齐水, 杨文, 等. 边界元近奇异积分计算的迭代sinh-sigmoidal组合式变换法[J]. 应用数学和力学, 2021, 42(4): 385-393. doi: 10.21656/1000-0887.410167LIU Jing, YAO Qishui, YANG Wen, et al. An iterated sinh-sigmoidal combined transformation method for calculating nearly singular integrals of boundary elements[J]. Applied Mathematics and Mechanics, 2021, 42(4): 385-393. (in Chinese) doi: 10.21656/1000-0887.410167 [10] 侯俊剑, 郭壮志, 钟玉东, 等. 一种基于新型插值单元的稳态传热边界元法[J]. 应用数学和力学, 2021, 42(11): 1169-1176. doi: 10.21656/1000-0887.410394HOU Junjian, GUO Zhuangzhi, ZHONG Yudong, et al. A boundary element method for steady-state heat transfer problems based on a novel type of interpolation elements[J]. Applied Mathematics and Mechanics, 2021, 42(11): 1169-1176. (in Chinese) doi: 10.21656/1000-0887.410394 [11] 胡宗军, 牛忠荣, 程长征, 等. 薄体结构温度场的高阶边界元分析[J]. 应用数学和力学, 2015, 36(2): 149-158. doi: 10.3879/j.issn.1000-0887.2015.02.004HU Zongjun, NIU Zhongrong, CHENG Changzheng, et al. High-order boundary element analysis of temperature fields in thin-walled structures[J]. Applied Mathematics and Mechanics, 2015, 36(2): 149-158. (in Chinese) doi: 10.3879/j.issn.1000-0887.2015.02.004 [12] HU Z J, NIU Z R, CHENG C Z. A new semi-analytic algorithm of nearly singular integrals on higher order element in 3D potential BEM[J]. Engineering Analysis With Boundary Elements, 2016, 63: 30-39. [13] 姚振汉, 王海涛. 边界元法[M]. 北京: 高等教育出版社, 2010: 21-22.YAO Zhenhan, WANG Haitao. Boundary Element Method[M]. Beijing: Higher Education Press, 2010: 21-22. (in Chinese) [14] YOSHIDA K I. Applications of fast multipole method to boundary integral equation method[D]. Kyoto: Kyoto University, 2001. [15] HU B, HU Z J, LI C. A fast multipole boundary element method based on higher order elements for analyzing 2-D potential problems[J]. Computers and Mathematics With Applications, 2021, 87: 65-76. [16] 章熙民. 传热学[M]. 3版. 北京: 中国建筑工业出版社, 1993: 40-42.ZHANG Ximin. Heat Transfer[M]. 3rd ed. Beijing: China Architecture & Building Press, 1993: 40-42. (in Chinese) [17] 王恩琦, 赵强, 张方方. 基于动态负荷下的地埋管钻孔壁温度简化计算方法[J]. 建筑科学, 2012, 28(12): 100-103. https://www.cnki.com.cn/Article/CJFDTOTAL-JZKX201212022.htmWANG Enqi, ZHAO Qiang, ZHANG Fangfang. Simplified calculation method of thermal performance of borehole heat exchanger based on dynamic load[J]. Building Science, 2012, 28(12): 100-103. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZKX201212022.htm [18] 中华人民共和国建设部, 中华人民共和国国家质量监督检验检疫总局. 地源热泵系统工程技术规范: GB 50336—2005[S]. 北京: 中国建筑工业出版社, 2005.Ministry of Construction of the People's Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Ground source heat pump system engineering technical specification: GB 50336—2005[S]. Beijing: China Architecture & Building Press, 2005. (in Chinese)