留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三维快速多极边界元法分析地埋管群传热问题

宋子欣 胡宗军 胡斌 牛忠荣

宋子欣, 胡宗军, 胡斌, 牛忠荣. 三维快速多极边界元法分析地埋管群传热问题[J]. 应用数学和力学, 2023, 44(7): 797-808. doi: 10.21656/1000-0887.430210
引用本文: 宋子欣, 胡宗军, 胡斌, 牛忠荣. 三维快速多极边界元法分析地埋管群传热问题[J]. 应用数学和力学, 2023, 44(7): 797-808. doi: 10.21656/1000-0887.430210
SONG Zixin, HU Zongjun, HU Bin, NIU Zhongrong. 3D Fast Multipole Boundary Element Method Analysis of Heat Exchange Performance of Buried Pipe Groups[J]. Applied Mathematics and Mechanics, 2023, 44(7): 797-808. doi: 10.21656/1000-0887.430210
Citation: SONG Zixin, HU Zongjun, HU Bin, NIU Zhongrong. 3D Fast Multipole Boundary Element Method Analysis of Heat Exchange Performance of Buried Pipe Groups[J]. Applied Mathematics and Mechanics, 2023, 44(7): 797-808. doi: 10.21656/1000-0887.430210

三维快速多极边界元法分析地埋管群传热问题

doi: 10.21656/1000-0887.430210
基金项目: 

国家自然科学基金项目 11272111

详细信息
    作者简介:

    宋子欣(1997—),女,硕士(E-mail: peytonsong@163.com)

    通讯作者:

    胡宗军(1975—),男,副教授,博士,硕士生导师(通讯作者. E-mail: huzongjun_1975@163.com)

  • 中图分类号: O39

3D Fast Multipole Boundary Element Method Analysis of Heat Exchange Performance of Buried Pipe Groups

  • 摘要: 基于三节点三角形线性单元,为克服单元跨叶子积分难题,将三维位势问题快速多极边界元法与几乎奇异积分的半解析算法相结合,实现了三维边界元法中几乎奇异积分的准确计算,该方法适用于U型地埋管薄体结构的换热分析. 在制冷、制热两种工况下研究了U型地埋管壁厚对换热量的影响,并进一步分析了管群间的热相互作用. 计算结果显示,当管壁导热系数一定时,管壁越厚,对管内流体和土壤之间的换热影响越大. 当钻孔间距一定时,管群中埋管数量越多,热干扰现象越强烈,提高管群换热量的主要措施是降低管群间热干扰. 因准确计算了几乎奇异积分,三维快速多极边界元法可以有效计算薄体和厚体耦合的三维热传导问题. 该文方法和分析结果可为地埋管换热器系统的工程应用提供参考.
  • 图  1  参考坐标系

    Figure  1.  Reference coordinate systems

    图  2  双层圆筒壁结构

    Figure  2.  The double cylinder wall structure

    图  3  双层圆筒壁网格模型

    Figure  3.  Double-layer cylindrical wall mesh models

    图  4  FMBEM在Z=10 mm处沿AB路径计算所得温度TFMBEM及相对误差Δ

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  4.  Temperature TFMBEM and relative error Δ calculated with the FMBEM along the AB path at Z=10 mm

    图  5  U型管FMBEM网格模型

    Figure  5.  The U-tube FMBEM mesh model

    图  6  不同管壁厚度时FMBEM计算温度分布图

    Figure  6.  FMBEM calculated temperature distribution diagrams for different tube wall thicknesses

    图  7  4×4管群FMBEM单元模型

    Figure  7.  The 4×4 pipe system's FMBEM model

    图  8  4×4管群FMBEM计算温度分布图

    Figure  8.  The 4×4 pipe system's FMBEM calculated temperature distribution diagrams

    图  9  4×4地埋管群单位井深换热量对比

    Figure  9.  Comparison of heat transfer fluxes of 4×4 buried pipe groups

    表  1  地埋管换热器设计参数

    Table  1.   The U-tube buried pipe design parameters

    number parameter name value unit
    1 borehole depth 50 m
    2 borehole radius 75 mm
    3 U-tube pipe outer radius 16 mm
    4 U-tube pipe inner radius 13 mm
    5 shank spacing 100 mm
    6 soil radius 1.5 m
    7 U-tube (PE pipe) thermal conductivity 0.4 W/(m·℃)
    8 fill material thermal conductivity 2.4 W/(m·℃)
    9 ground thermal conductivity 2.0 W/(m·℃)
    10 inlet water temperature in summer 35
    11 outlet water temperature in summer 32
    12 inlet water temperature in winter 7
    13 outlet water temperature in winter 10
    14 undisturbed ground temperature 18
    下载: 导出CSV

    表  2  不同管壁厚度时地埋管单位井深换热量(单位: W/m)

    Table  2.   Heat transfer fluxes of buried pipes with different wall thicknesses (unit: W/m)

    wall thickness cooling heating
    Qi Qo Q=i+Qo Qi Qo Q=Qi+Qo
    0 -29.466 -17.230 -46.696 20.433 8.205 28.638
    3 -28.081 -13.300 -41.381 20.061 5.300 25.361
    6 -21.922 -15.910 -37.832 14.640 8.548 23.188
    8 -18.118 -14.471 -32.589 11.826 8.147 19.973
    10 -15.927 -13.017 -28.944 10.332 7.407 17.739
    下载: 导出CSV

    表  3  壁厚3 mm时4×4管群单位井深换热量(单位: W/m)

    Table  3.   Heat transfer fluxes of 4×4 pipe groups for a wall thickness of 3 mm (unti: W/m)

    heat exchange cooling heating
    tube of №.① tube of №.② tube of №.③ tube of №.④ tube of №.① tube of №.② tube of №.③ tube of №.④
    Qi -7.901 -10.999 -11.640 -14.856 6.055 8.218 8.390 10.352
    Qo -1.530 -5.077 -5.637 -8.999 0.379 1.822 2.216 4.275
    Q=Qi+Qo -9.431 -16.076 -17.277 -23.855 6.434 10.040 10.606 14.627
    下载: 导出CSV

    表  4  不考虑壁厚时4×4管群单位井深换热量(单位: W/m)

    Table  4.   Heat transfer fluxes of 4×4 pipe groups regardless of the wall thickness (unit: W/m)

    heat exchange cooling heating
    tube of №.① tube of №.② tube of №.③ tube of №.④ tube of №.① tube of №.② tube of №.③ tube of №.④
    Qi -9.768 -14.009 -13.776 -17.944 7.966 10.579 10.447 13.002
    Qo -0.519 -3.829 -4.128 -8.281 2.320 0.337 0.535 3.079
    Q=Qi+Qo -10.287 -17.838 -17.904 -26.225 10.286 10.916 10.982 16.081
    下载: 导出CSV
  • [1] GUAN Y L, ZHAO X L, WANG G J. 3D dynamic numerical programming and calculation of vertical buried tube heat exchanger performance of ground source heat pumps under coupled heat transfer inside and outside of tube[J]. Energy & Buildings, 2017, 139: 186-196.
    [2] KERME E D, FUNG A S. Transient heat transfer simulation, analysis and thermal performance study of double U-tube borehole heat exchanger based on numerical heat transfer model[J]. Applied Thermal Engineering, 2020, 173: 115189. doi: 10.1016/j.applthermaleng.2020.115189
    [3] 贺泽群, 于明志, 毛煜东. 基于负荷自适应分配的地埋管换热器传热分析[J]. 工程热物理学报, 2020, 41(8): 2044-2051. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB202008029.htm

    HE Zequn, YU Mingzhi, MAO Yudong. Heat transfer analysis of ground heat exchanger based on self adaption load distribution method[J]. Journal of Engineering Thermophysics, 2020, 41(8): 2044-2051. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB202008029.htm
    [4] 张荻, 郭帅, 谢永慧. 基于球窝结构冷却通道的强化传热数值及实验研究[J]. 应用数学和力学, 2014, 35(3): 254-263. doi: 10.3879/j.issn.1000-0887.2014.03.003

    ZHANG Di, GUO Shuai, XIE Yonghui. Numerical and experimental study of heat transfer enhancement based on the structure of cooling channels with dimples[J]. Applied Mathematics and Mechanics, 2014, 35(3): 254-263. (in Chinese) doi: 10.3879/j.issn.1000-0887.2014.03.003
    [5] 朱利媛, 牛忠荣, 胡宗军. 地源热泵地埋管换热性能的边界元法分析[J]. 太阳能学报, 2015, 36(4): 936-942. https://www.cnki.com.cn/Article/CJFDTOTAL-TYLX201504027.htm

    ZHU Liyuan, NIU Zhongrong, HU Zongjun. Boundary element analysis of heat transfer of buried pipes in GSHP[J]. Acta Energiae Solaris Sinica, 2015, 36(4): 936-942. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TYLX201504027.htm
    [6] LEI X B, ZHENG X H, DUAN C Y. Three dimensional numerical simulation of geothermal field of buried pipe group coupled with heat and permeable groundwater[J]. Energies, 2019, 12(19): 3698. doi: 10.3390/en12193698
    [7] 李聪, 胡斌, 胡宗军, 等. 二维正交各向异性位势问题的高阶单元快速多极边界元法[J]. 力学学报, 2021, 53(4): 1038-1048. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202104010.htm

    LI Cong, HU Bin, HU Zongjun, et al. Analysis of 2D orthotropic potential problems using fast multipole boundary element method with higher order elements[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 1038-1048. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202104010.htm
    [8] 徐刚, 陈静, 王树齐, 等. 无奇异边界元法精度分析[J]. 上海交通大学学报, 2018, 52(7): 867-872. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201807019.htm

    XU Gang, CHEN Jing, WANG Shuqi, et al. The numerical accuracy of the desingularized boundary integral equation method[J]. Journal of Shanghai Jiaotong University, 2018, 52(7): 867-872. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201807019.htm
    [9] 刘静, 姚齐水, 杨文, 等. 边界元近奇异积分计算的迭代sinh-sigmoidal组合式变换法[J]. 应用数学和力学, 2021, 42(4): 385-393. doi: 10.21656/1000-0887.410167

    LIU Jing, YAO Qishui, YANG Wen, et al. An iterated sinh-sigmoidal combined transformation method for calculating nearly singular integrals of boundary elements[J]. Applied Mathematics and Mechanics, 2021, 42(4): 385-393. (in Chinese) doi: 10.21656/1000-0887.410167
    [10] 侯俊剑, 郭壮志, 钟玉东, 等. 一种基于新型插值单元的稳态传热边界元法[J]. 应用数学和力学, 2021, 42(11): 1169-1176. doi: 10.21656/1000-0887.410394

    HOU Junjian, GUO Zhuangzhi, ZHONG Yudong, et al. A boundary element method for steady-state heat transfer problems based on a novel type of interpolation elements[J]. Applied Mathematics and Mechanics, 2021, 42(11): 1169-1176. (in Chinese) doi: 10.21656/1000-0887.410394
    [11] 胡宗军, 牛忠荣, 程长征, 等. 薄体结构温度场的高阶边界元分析[J]. 应用数学和力学, 2015, 36(2): 149-158. doi: 10.3879/j.issn.1000-0887.2015.02.004

    HU Zongjun, NIU Zhongrong, CHENG Changzheng, et al. High-order boundary element analysis of temperature fields in thin-walled structures[J]. Applied Mathematics and Mechanics, 2015, 36(2): 149-158. (in Chinese) doi: 10.3879/j.issn.1000-0887.2015.02.004
    [12] HU Z J, NIU Z R, CHENG C Z. A new semi-analytic algorithm of nearly singular integrals on higher order element in 3D potential BEM[J]. Engineering Analysis With Boundary Elements, 2016, 63: 30-39.
    [13] 姚振汉, 王海涛. 边界元法[M]. 北京: 高等教育出版社, 2010: 21-22.

    YAO Zhenhan, WANG Haitao. Boundary Element Method[M]. Beijing: Higher Education Press, 2010: 21-22. (in Chinese)
    [14] YOSHIDA K I. Applications of fast multipole method to boundary integral equation method[D]. Kyoto: Kyoto University, 2001.
    [15] HU B, HU Z J, LI C. A fast multipole boundary element method based on higher order elements for analyzing 2-D potential problems[J]. Computers and Mathematics With Applications, 2021, 87: 65-76.
    [16] 章熙民. 传热学[M]. 3版. 北京: 中国建筑工业出版社, 1993: 40-42.

    ZHANG Ximin. Heat Transfer[M]. 3rd ed. Beijing: China Architecture & Building Press, 1993: 40-42. (in Chinese)
    [17] 王恩琦, 赵强, 张方方. 基于动态负荷下的地埋管钻孔壁温度简化计算方法[J]. 建筑科学, 2012, 28(12): 100-103. https://www.cnki.com.cn/Article/CJFDTOTAL-JZKX201212022.htm

    WANG Enqi, ZHAO Qiang, ZHANG Fangfang. Simplified calculation method of thermal performance of borehole heat exchanger based on dynamic load[J]. Building Science, 2012, 28(12): 100-103. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZKX201212022.htm
    [18] 中华人民共和国建设部, 中华人民共和国国家质量监督检验检疫总局. 地源热泵系统工程技术规范: GB 50336—2005[S]. 北京: 中国建筑工业出版社, 2005.

    Ministry of Construction of the People's Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Ground source heat pump system engineering technical specification: GB 50336—2005[S]. Beijing: China Architecture & Building Press, 2005. (in Chinese)
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  368
  • HTML全文浏览量:  146
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-21
  • 修回日期:  2022-10-13
  • 刊出日期:  2023-07-01

目录

    /

    返回文章
    返回