[1] |
SHECHTMAN D, BLECH I, GRATIAS D, et al. Metallic phase with long-range orientational order and no translational symmetry[J]. Physical Review Letters, 1984, 53(20): 1951-1954. doi: 10.1103/PhysRevLett.53.1951
|
[2] |
DING D, YANG W, HU C, et al. Linear elasticity theory of quasicrystals and defects in quasicrystals[J]. Materials Science Forum, 1994, 150/151: 345-354. doi: 10.4028/www.scientific.net/MSF.150-151.345
|
[3] |
范天佑. 准晶数学弹性理论及应用[M]. 北京: 北京理工大学出版社, 1999.FAN Tianyou. Mathematical Theory of Elasticity of Quasicrystals and Its Application[M]. Beijing: Beijing Institute of Technology Press, 1999. (in Chinese)
|
[4] |
郭俊宏, 刘官厅. 一维六方准晶中带双裂纹的椭圆空口问题的解析解[J]. 应用数学和力学, 2008, 29(4): 439-446. http://www.applmathmech.cn/article/id/1059GUO Junhong, LIU Guanting. Analytic solutions of problem about an elliptic hole with two straight cracks in one-dimensional hexagonal quasicrystals[J]. Applied Mathematics and Mechanics, 2008, 29(4): 439-446. (in Chinese) http://www.applmathmech.cn/article/id/1059
|
[5] |
LI X F, XIE Y L, FAN T Y. Elasticity and dislocations in quasicrystals with 18-fold symmetry[J]. Physics Letters A, 2014, 377(39): 2810-2814.
|
[6] |
肖万伸, 张春雨, 邹伟生. 一维六方准晶复合材料界面层中螺型位错分析[J]. 材料科学与工程学报, 2014, 32(2): 215-218. https://www.cnki.com.cn/Article/CJFDTOTAL-CLKX201402012.htmXIAO Wanshen, ZHANG Chunyu, ZOU Weisheng. Elastic analysis of a screw dislocation in an interfacial layer in 1D hexagonal quasicrystal composites[J]. Journal of Materials Science & Engineering, 2014, 32(2): 215-218. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLKX201402012.htm
|
[7] |
WANG X, SCHIAVONE P. Elastic field near the tip of an anticrack in a decagonal quasicrystalline material[J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(3): 401-408. doi: 10.1007/s10483-020-2582-8
|
[8] |
ZHANG Z G, DING S H, LI X. Two kinds of contact problems for two-dimensional hexagonal quasicrystals[J]. Mechanics Research Communications, 2021, 113: 103683. doi: 10.1016/j.mechrescom.2021.103683
|
[9] |
DING D H, QIN Y L, WANG R H, et al. Generalization of Eshelby's method to the anisotropic elasticity theory of dislocations in quasicrystals[J]. Acta Physica Sinica, 1995, 4(11): 816-824.
|
[10] |
ALTAY G, DÖMECI M C. On the fundamental equations of piezoelasticity of quasicrystal media[J]. International Journal of Solids and Structures, 2012, 49(23/24): 3255-3262.
|
[11] |
ZHANG L L, ZHANG Y M, GAO Y. General solutions of plane elasticity of one-dimensional orthorhombic quasicrystals with piezoelectric effect[J]. Physics Letters A, 2014, 378(37): 2768-2776. doi: 10.1016/j.physleta.2014.07.027
|
[12] |
LI X Y, LI P D, WU T H, et al. Three-dimensional fundamental solutions for one-dimensional hexagonal quasicrystal with piezoelectric effect[J]. Physics Letters A, 2014, 378(10): 826-834. doi: 10.1016/j.physleta.2014.01.016
|
[13] |
FAN C Y, LI Y, XU G T, et al. Fundamental solutions and analysis of three-dimensional cracks in one-dimensional hexagonal piezoelectric quasicrystals[J]. Mechanics Research Communications, 2016, 74: 39-44. doi: 10.1016/j.mechrescom.2016.03.009
|
[14] |
白巧梅, 丁生虎. 一维六方准晶压电中正六边形孔边裂纹的反平面问题[J]. 应用数学和力学, 2019, 40(10): 1071-1080. doi: 10.21656/1000-0887.390362BAI Qiaomei, DING Shenghu. An anti-plane problem of cracks at edges of regular hexagonal holes in 1D hexagonal piezoelectric quasicrystals[J]. Applied Mathematics and Mechanics, 2019, 40(10): 1071-1080. (in Chinese) doi: 10.21656/1000-0887.390362
|
[15] |
LI Y, QIN Q H, ZHAO M H. Analysis of 3D planar crack problems in one-dimensional hexagonal piezoelectric quasicrystals with thermal effect, part Ⅰ: theoretical formulations[J]. International Journal of Solids and Structures, 2020, 188/189: 269-281. doi: 10.1016/j.ijsolstr.2019.10.019
|
[16] |
刘兴伟, 李星, 汪文帅. 一维六方压电准晶中正n边形孔边裂纹的反平面问题[J]. 应用数学和力学, 2020, 41(7): 713-724. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSX202007002.htmLIU Xingwei, LI Xing, WANG Wenshuai. The anti-plane problem of regular n-polygon holes with radial edge cracks in 1D hexagonal piezoelectric quasicrystals[J]. Applied Mathematics and Mechanics, 2020, 41(7): 713-724. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YYSX202007002.htm
|
[17] |
CHENG J X, LIU B J, CAO X L, et al. Applications of the Trefftz method to the anti-plane fracture of 1D hexagonal piezoelectric quasicrystals[J]. Engineering Analysis With Boundary Elements, 2021, 131: 194-205. doi: 10.1016/j.enganabound.2021.06.025
|
[18] |
周旺民, 宋玉海. 立方准晶材料中的运动螺型位错[J]. 应用数学和力学, 2005, 26(12): 1459-1462. http://www.applmathmech.cn/article/id/636ZHOU Wangmin, SONG Yuhai. Moving screw dislocation in cubic quasicrystal[J]. Applied Mathematics and Mechanics, 2005, 26(12): 1459-1462. (in Chinese) http://www.applmathmech.cn/article/id/636
|
[19] |
GAO Y, ZHANG L L. Plane problems of cubic quasicrystal media with an elliptic hole or a crack[J]. Physics Letters A, 2011, 375(28): 2775-2781.
|
[20] |
LI L H, LIU G T. Stroh formalism for icosahedral quasicrystal and its application[J]. Physics Letters A, 2012, 376(8/9): 987-990.
|
[21] |
LONG F, LI X F. Thermal stresses of a cubic quasicrystal circular disc[J]. Mechanics Research Communications, 2022, 124: 103913.
|
[22] |
王仁卉, 胡承正, 桂嘉年. 准晶物理学[M]. 北京: 科学出版社, 2004.WANG Renhui, HU Chengzheng, GUI Jianian. Quasicrystal Physics[M]. Beijing: Science Press, 2004. (in Chinese)
|
[23] |
CHIANG C R. Mode-Ⅲ crack problems in a cubic piezoelectric medium[J]. Acta Mechanica, 2013, 224: 2203-2217.
|
[24] |
JOHNSON K L. Contact Mechanics[M]. Cambridge: Cambridge University Press, 1985.
|