留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

弹性薄壳动力学比拟的曲面论基础

薛纭 陈立群

薛纭, 陈立群. 弹性薄壳动力学比拟的曲面论基础[J]. 应用数学和力学, 2023, 44(5): 489-498. doi: 10.21656/1000-0887.430222
引用本文: 薛纭, 陈立群. 弹性薄壳动力学比拟的曲面论基础[J]. 应用数学和力学, 2023, 44(5): 489-498. doi: 10.21656/1000-0887.430222
XUE Yun, CHEN Liqun. A Fundamental Surface Theory for Kinetic Analogy of Thin Elastic Shells[J]. Applied Mathematics and Mechanics, 2023, 44(5): 489-498. doi: 10.21656/1000-0887.430222
Citation: XUE Yun, CHEN Liqun. A Fundamental Surface Theory for Kinetic Analogy of Thin Elastic Shells[J]. Applied Mathematics and Mechanics, 2023, 44(5): 489-498. doi: 10.21656/1000-0887.430222

弹性薄壳动力学比拟的曲面论基础

doi: 10.21656/1000-0887.430222
我刊编委陈立群来稿
基金项目: 

国家自然科学基金项目 11872159

国家自然科学基金项目 11372195

详细信息
    作者简介:

    薛纭(1956—),男,教授,博士,硕士生导师(E-mail: xy@sit.edu.cn)

    通讯作者:

    陈立群(1963—),男,教授,博士,博士生导师(通讯作者. E-mail: chenliqun@hit.edu.cn)

  • 中图分类号: O302

A Fundamental Surface Theory for Kinetic Analogy of Thin Elastic Shells

Contributed by CHEN Liqun, M. AMM Editorial Board
  • 摘要: 将Kirchhoff动力学比拟从弹性细杆推广到弹性薄壳,需要相应的经典曲面论新的表达形式,即用刚体动力学的概念和方法描述曲面的基本性质,形成广义Kirchhoff动力学比拟方法. 从曲面非正交网格的两个刚性正交轴系出发,用其姿态坐标和Lamé系数表达曲面偏微分方程;用弯扭度和Lamé系数表达曲面的第一和第二基本二次型,得到了法曲率的表达式,由此计算了主曲率和主方向,验证了与经典曲面论的一致性;给出算例以说明该文方法的应用,这一方法可以用来表达曲面的Rodrigues方程、Weingarten公式和Gauss公式,以及曲面论的基本方程. 分析表明了这一方法对表述曲面微分几何的可行性,具有推导简洁和直观的优点. 这有助于为广义Kirchhoff比拟及其后续发展奠定数学基础.
    1)  我刊编委陈立群来稿
  • 图  1  曲面上点的矢径和正交轴系

    Figure  1.  The radius vector and orthogonal frames of a point on the surface

    图  2  轴系(ei1, ei2, ei3)姿态的Euler角

    Figure  2.  Euler angles of the attitude of the frames (ei1, ei2, ei3)

    图  3  球面坐标和球面上的轴系

    Figure  3.  Spherical coordinates and frames on the spherical surface

  • [1] 徐晓建, 邓子辰. 基于简化的应变梯度理论下Kirchhoff板模型边值问题的提法及其应用[J]. 应用数学和力学, 2022, 43(4): 363-373. doi: 10.21656/1000-0887.420286

    XU Xiaojian, DENG Zichen. Boundary value problems of a Kirchhoff type plate model based on the simplified strain gradient elasticity and the application[J]. Applied Mathematics and Mechanics, 2022, 43(4): 363-373. (in Chinese) doi: 10.21656/1000-0887.420286
    [2] 王奇, 朱寅鑫, 牛培行, 等. 柔性扑翼翼型的气动性能仿真分析[J]. 应用数学和力学, 2022, 43(5): 586-596. doi: 10.21656/1000-0887.430155

    WANG Qi, ZHU Yinxin, NIU Peixing, et al. Simulation of aerodynamic performances of flexible flapping wing airfoils[J]. Applied Mathematics and Mechanics, 2022, 43(5): 586-596. (in Chinese) doi: 10.21656/1000-0887.430155
    [3] LOVE A E H. A Treatise on the Mathematical Theory of Elasticity[M]. 4th ed. Dover, New York, 1927.
    [4] 刘延柱. 弹性细杆的非线性力学: DNA力学模型的理论基础[M]. 北京: 清华大学出版社, 2006.

    LIU Yanzhu. Nonlinear Mechanics of Thin Elastic Rod: Theoretical Basis of Mechanical Model of DNA[M]. Beijing: Tsinghua University Press, 2006. (in Chinese)
    [5] COLEMAN B, SWIGON D. Theory of self-contact in Kirchhoff rods with applications to supercoiling of knotted and unknotted DNA plasmids[J]. Philosophical Transactions: Mathematical, Physical and Engineering Sciences, 2004, 362(1820): 1281-1299. doi: 10.1098/rsta.2004.1393
    [6] 薛纭, 刘延柱, 陈立群. 超细长弹性杆的分析力学问题[J]. 力学学报, 2005, 37(4): 485-493. doi: 10.3321/j.issn:0459-1879.2005.04.014

    XUE Yun, LIU Yanzhu, CHEN Liqun. On analytical mechanics for a super-thin elastic rod[J]. Chinese Journal of Theoretical and Applied Mechanics, 2005, 37(4): 485-493. (in Chinese) doi: 10.3321/j.issn:0459-1879.2005.04.014
    [7] XUE Yun, SHANG Huilin. Jourdain principle of a super-thin elastic rod dynamics[J]. Chinese Physics Letters, 2009, 26(7): 074501. doi: 10.1088/0256-307X/26/7/074501
    [8] 薛纭, 曲佳乐, 陈立群. Cosserat生长弹性杆动力学的Gauss最小拘束原理[J]. 应用数学和力学, 2015, 36(7): 700-709. doi: 10.3879/j.issn.1000-0887.2015.07.003

    XUE Yun, QU Jiale, CHEN Liqun. Gauss principle of least constraint for Cosserat growing elastic rod dynamics[J]. Applied Mathematics and Mechanics, 2015, 36(7): 700-709. (in Chinese) doi: 10.3879/j.issn.1000-0887.2015.07.003
    [9] WANG P, XUE Y, LIU Y L. Noether symmetry and conserved quantities of analytical dynamics of a Cosserat thin elastic rod[J]. Chinese Physics B, 2013, 22(10): 104503-6. doi: 10.1088/1674-1056/22/10/104503
    [10] 薛纭, 陈立群, 刘延柱. Kirchhoff方程的相对常值特解及其Lyapunov稳定性[J]. 物理学报, 2004, 53(12): 4029-4036. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB200412002.htm

    XUE Yun, CHEN Liqun, LIU Yanzhu. Special solutions of Kirchhoff equations and their Lyapunov stability[J]. Acta Physica Sinica, 2004, 53(12): 4029-4036. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB200412002.htm
    [11] 刘延柱, 薛纭. 基于精确Cosserat模型的螺旋杆稳定性分析[J]. 应用数学和力学, 2011, 32(5): 570-578. doi: 10.3879/j.issn.1000-0887.2011.05.007

    LIU Yanzhu, XUE Yun. Stability analysis of a helical rod based on exact Cosserat's model[J]. Applied Mathematics and Mechanics, 2011, 32(5): 570-578. (in Chinese) doi: 10.3879/j.issn.1000-0887.2011.05.007
    [12] LEUNG A Y T, KUANG J L, LIM C W, et al. Spatial chaos of buckled elastica by the Kirchhoff analogy of a gyrostat[J]. Computers & Structures, 2005, 83(28/30): 2395-2413. http://www.onacademic.com/detail/journal_1000034066282310_ea1d.html
    [13] 陈至达. 杆、板、壳大变形理论[M]. 北京: 科学出版社, 1994: 106.

    CHEN Zhida. Rod, Plate, Shell Large Deformation Theory[M]. Beijing: Science Press, 1994: 106. (in Chinese)
    [14] 薛纭, 陈立群. Kirchhoff动力学比拟对弹性薄壳的推广[J]. 力学学报, 2021, 53(1): 234-247. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202101019.htm

    XUE Yun, CHEN Liqun. Generalization of Kirchhoff kinetic analogy to thin elastic shells[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 234-247. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202101019.htm
    [15] 吴大任. 微分几何讲义[M]. 北京: 高等教育出版社, 1959.

    WU Daren. Differential Geometry Lecture Notes[M]. Beijing: Higher Education Press, 1959. (in Chinese)
    [16] CAO D Q, TUCKER R W. Nonlinear dynamics of elastic rods using the Cosserat theory: modelling and simulation[J]. International Journal of Solids and Structures, 2008, 45(2): 460-477. http://www.sciencedirect.com/science/article/pii/S0020768307003253/pdfft?md5=713cbb83211a366e9ce75c9145719738&pid=1-s2.0-S0020768307003253-main.pdf
    [17] 刘铖, 胡海岩. 基于李群局部标架的多柔体系统动力学建模与计算[J]. 力学学报, 2021, 53(1): 213-233. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202101018.htm

    LIU Cheng, HU Haiyan. Dynamic modeling and computation for flexible multibody systems based on the local frame of Lie group[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 213-233. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202101018.htm
    [18] 刘延柱. 高等动力学[M]. 2版. 北京: 高等教育出版社, 2016.

    LIU Yanzhu. Advanced Dynamics[M]. 2nd ed. Beijing: Higher Education Press, 2016. (in Chinese)
    [19] 王桢, 丁洁玉. 多刚体系统动力学方向矢量模型及多步块数值方法[J]. 应用数学和力学, 2020, 41(12): 1323-1335. doi: 10.21656/1000-0887.400340

    WANG Zhen, DING Jieyu. A multibody system dynamics vector model and the multistep block nemerical method[J]. Applied Mathematics and Mechanics, 2020, 41(12): 1323-1335. (in Chinese) doi: 10.21656/1000-0887.400340
    [20] 关玉铭, 戈新生. 基于非约束模态的中心刚体-Timoshenko梁动力学建模与分析[J]. 应用数学和力学, 2022, 43(2): 156-165. doi: 10.21656/1000-0887.420089

    GUAN Yuming, GE Xinsheng. Dynamic modeling and analysis of the central rigid body-Timoshenko beam model based on unconstrained modes[J]. Applied Mathematics and Mechanics, 2022, 43(2): 156-165. (in Chinese) doi: 10.21656/1000-0887.420089
  • 加载中
图(3)
计量
  • 文章访问数:  544
  • HTML全文浏览量:  139
  • PDF下载量:  126
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-04
  • 修回日期:  2022-08-06
  • 刊出日期:  2023-05-01

目录

    /

    返回文章
    返回