[1] |
HOPPENSTEADT F C, IZHIKEVICH E M. Pattern recognition via synchronization in phase-locked loop neural networks[J]. IEEE Transactions on Neural Networks, 2000, 11: 734-738. doi: 10.1109/72.846744
|
[2] |
ALIMI A M, AOUITI C, ASSALI E A. Finite-time and fixed-time synchronization of a class of inertial neural networks with multi-proportional delays and its application to secure communication[J]. Neurocomputing, 2019, 332: 29-43. doi: 10.1016/j.neucom.2018.11.020
|
[3] |
SUBRAMANIAN K, MUTHUKUMAR P. Global asymptotic stability of complex-valued neural networks with additive time-varying delays[J]. Cognitive Neurodynamics, 2017, 11: 293-306. doi: 10.1007/s11571-017-9429-1
|
[4] |
陈宇, 周博, 宋乾坤. 具有不确定性的分数阶时滞复值神经网络无源性[J]. 应用数学和力学, 2021, 42(5): 492-499. doi: 10.21656/1000-0887.410309CHEN Yu, ZHOU Bo, SONG Qiankun. Passivity of fractional-order delayed complex-valued neural networks with uncertainties[J]. Applied Mathematics Mechanics, 2021, 42(5): 492-499. (in Chinese) doi: 10.21656/1000-0887.410309
|
[5] |
杜雨薇, 李兵, 宋乾坤. 事件触发下混合时滞神经网络的状态估计[J]. 应用数学和力学, 2020, 41(8): 887-898. doi: 10.21656/1000-0887.400377DU Yuwei, LI Bing, SONG Qiankun. Event-based state estimation for neural network with time-varying delay and infinite-distributed delay[J]. Applied Mathematics and Mechanics, 2020, 41(8): 887-898. (in Chinese) doi: 10.21656/1000-0887.400377
|
[6] |
YANG X J, SONG Q K, LIU Y R, et al. Finite-time stability analysis of fractional-order neural networks with delay[J]. Neurocomputing, 2015, 152: 19-26. doi: 10.1016/j.neucom.2014.11.023
|
[7] |
WANG X, PARK J H, YANG H L, et al. Delay-dependent fuzzy sampled-data synchronization of T-S fuzzy complex networks with multiple couplings[J]. IEEE Transactions on Fuzzy Systems, 2019, 28: 178-189.
|
[8] |
TANG Z, PARK J H, WANG Y, et al. Distributed impulsive quasi-synchronization of Lure networks with proportional delay[J]. IEEE Transactions on Cybernetics, 2018, 49: 3105-3115.
|
[9] |
CHEN J J, ZENG Z G, JIANG P. Global Mittag-Leffler stability and synchronization of memristor-based fractional-order neural networks[J]. Neural Networks, 2014, 51: 1-8. doi: 10.1016/j.neunet.2013.11.016
|
[10] |
LI H L, HU C, CAO J, et al. Quasi-projective and complete synchronization of fractional-order complex-valued neural networks with time delays[J]. Neural Networks, 2019, 118: 102-109. doi: 10.1016/j.neunet.2019.06.008
|
[11] |
GU Y J, YU Y G, WANG H. Projective synchronization for fractional-order memristor-based neural networks with time delays[J]. Neural Computing and Applications, 2019, 31: 6039-6054. doi: 10.1007/s00521-018-3391-7
|
[12] |
GU Y J, YU Y G, WANG H. Synchronization-based parameter estimation of fractional-order neural networks[J]. Physica A: Statistical Mechanics and Its Applications, 2017, 483: 351-361. doi: 10.1016/j.physa.2017.04.124
|
[13] |
张平奎, 杨绪君. 基于激励滑模控制的分数阶神经网络的修正投影同步研究[J]. 应用数学和力学, 2018, 39(3): 343-354. doi: 10.21656/1000-0887.380098ZHANG Pingkui, YANG Xujun. Modified projective synchronization of a class of fractional-order neural networks based on active sliding mode controll[J]. Applied Mathematics Mechanics, 2018, 39(3): 343-354. (in chinese) doi: 10.21656/1000-0887.380098
|
[14] |
YANG S, YU J, HU C, et al. Quasi-projective synchronization of fractional-order complex-valued recurrent neural networks[J]. Neural Networks, 2018, 104: 104-113. doi: 10.1016/j.neunet.2018.04.007
|
[15] |
DING D W, YAO X L, ZHANG H W. Complex projection synchronization of fractional-order complex-valued memristive neural networks with multiple delays[J]. Neural Processing Letters, 2020, 51: 325-345. doi: 10.1007/s11063-019-10093-x
|
[16] |
ZHANG L Z, YANG Y Q, WANG F. Synchronization analysis of fractional-order neural networks with time-varying delays via discontinuous neuron activations[J]. Neurocomputing, 2018, 275: 40-49. doi: 10.1016/j.neucom.2017.04.056
|
[17] |
LIU Y, ZHANG D, LOU J, et al. Stability analysis of quaternion-valued neural networks: decomposition and direct approaches[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 29: 4201-4211.
|
[18] |
SONG Q K, CHEN Y X, ZHAO Z J, et al. Robust stability of fractional-order quaternion-valued neural networks with neutral delays and parameter uncertainties[J]. Neurocomputing, 2021, 420: 70-81. doi: 10.1016/j.neucom.2020.08.059
|
[19] |
ZOU C M, KOU K I, WANG Y. Quaternion collaborative and sparse representation with application to color face recognition[J]. IEEE Transactions on Image Processing, 2016, 25: 3287-3302. doi: 10.1109/TIP.2016.2567077
|
[20] |
XIA Y L, JAHANCHAHI C, MANDIC D P. Quaternion-valued echo state networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2014, 26: 663-673.
|
[21] |
MATSUI N, ISOKAWA T, KUSAMICHI H, et al. Quaternion neural network with geometrical operators[J]. Journal of Intelligent Fuzzy Systems, 2004, 15: 149-164.
|
[22] |
KUMAR U, DAS S, HUANG C, et al. Fixed-time synchronization of quaternion-valued neural networks with time-varying delay[J]. Proceedings of the Royal Society A, 2020, 476: 20200324. doi: 10.1098/rspa.2020.0324
|
[23] |
XIAO J Y, ZHONG S M. Synchronization and stability of delayed fractional-order memristive quaternion-valued neural networks with parameter uncertainties[J]. Neurocomputing, 2019, 363: 321-338. doi: 10.1016/j.neucom.2019.06.044
|
[24] |
PAHNEHKOLAEI S M A, ALFI A, MACHADO J A T. Delay-dependent stability analysis of the QUAD vector field fractional order quaternion-valued memristive uncertain neutral type leaky integrator echo state neural networks[J]. Neural Networks, 2019, 117: 307-327. doi: 10.1016/j.neunet.2019.05.015
|
[25] |
CHEN, X F, LI Z S, SONG Q K, et al. Robust stability analysis of quaternion-valued neural networks with time delays and parameter uncertainties[J]. Neural Networks, 2017, 91: 55-65. doi: 10.1016/j.neunet.2017.04.006
|
[26] |
LIN D Y, CHEN X F, LI B, et al. LMI conditions for some dynamical behaviors of fractional-order quaternion-valued neural networks[J]. Advances in Difference Equations, 2019, 2019(1): 226. doi: 10.1186/s13662-019-2163-8
|