留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于标准热阻的多类储热材料归一化动态表征及应用

郝俊红 邬学峰 张师宁 田亮 戈志华

郝俊红,邬学峰,张师宁,田亮,戈志华. 基于标准热阻的多类储热材料归一化动态表征及应用 [J]. 应用数学和力学,2022,43(11):1227-1237 doi: 10.21656/1000-0887.430231
引用本文: 郝俊红,邬学峰,张师宁,田亮,戈志华. 基于标准热阻的多类储热材料归一化动态表征及应用 [J]. 应用数学和力学,2022,43(11):1227-1237 doi: 10.21656/1000-0887.430231
HAO Junhong, WU Xuefeng, ZHANG Shining, TIAN Liang, GE Zhihua. Normalized Dynamic Characterization and Application of Multiple Heat Storage Materials Based on Standard Thermal Resistance[J]. Applied Mathematics and Mechanics, 2022, 43(11): 1227-1237. doi: 10.21656/1000-0887.430231
Citation: HAO Junhong, WU Xuefeng, ZHANG Shining, TIAN Liang, GE Zhihua. Normalized Dynamic Characterization and Application of Multiple Heat Storage Materials Based on Standard Thermal Resistance[J]. Applied Mathematics and Mechanics, 2022, 43(11): 1227-1237. doi: 10.21656/1000-0887.430231

基于标准热阻的多类储热材料归一化动态表征及应用

doi: 10.21656/1000-0887.430231
基金项目: 国家自然科学基金(52176068)
详细信息
    作者简介:

    郝俊红(1988—),男,副教授,博士(通讯作者. E-mail:hjh@ncepu.edu.cn

  • 中图分类号: TB34

Normalized Dynamic Characterization and Application of Multiple Heat Storage Materials Based on Standard Thermal Resistance

  • 摘要:

    基于标准热阻和能量流法,推导出储热材料与换热流体的瞬态换热热阻,通过类比电路分析法,获得了储热-换热过程的瞬态热量流模型及动态响应时间常数。进一步引入节点温度,重新定义换热热阻,获得了储热与换热过程耦合的三阶电路瞬态热量流模型,求解得到了加热、储热和释热三类时间常数,可用于协同表征储热材料中储热与释热的快慢程度,从而实现了多类储热材料的归一化动态表征。通过数值模拟验证与应用对比分析,发现基于多时间常数的归一化动态模型用于表征储热材料的动态特性是可行的,可直接对不同换热、储热材料进行对比分析。案例分析发现与固体储热材料换热时,液态金属的动态换热能力优于熔融盐,而相比于水蒸气和CO2,空气与陶瓷材料换热能更快达到稳态。

  • 图  1  储热材料瞬态换热模型

    Figure  1.  The dynamic heat transfer model for heat storage materials

    图  2  传热过程瞬态热流模型

    Figure  2.  The transient heat flow model for heat transfer process

    图  3  储热材料分层示意图

    Figure  3.  The layering diagram for the thermal storage materials

    图  4  三阶电路瞬态热流模型

    Figure  4.  The transient heat flow model for the 3rd-order circuit

    图  5  瞬态热流模型与仿真结果对比:(a)仿真1;(b)仿真2;(c)仿真3

    Figure  5.  Comparison between transient heat flow models and simulation results: (a) simulation 1; (b) simulation 2; (c) simulation 3

    图  6  三种情况下三阶电路瞬态热量流模型计算结果

    Figure  6.  Calculation results of the 3rd-order circuit transient heat flux model in 3 cases

    图  7  不同换热流体下储热材料中间面的温升:(a)硅质耐火砖;(b)镁质耐火砖;(c)钢筋混凝土;(d)铸铁;(e)铸钢

    Figure  7.  Temperature rises of intermediate surfaces of thermal storage materials in different heat exchange fluids: (a) silicon refractory bricks; (b) magnesia refractory bricks; (c) reinforced concrete; (d) cast iron; (e) cast steel

    图  8  不同换热流体下陶瓷材料中间面的温升:(a)石英;(b)碳化硅;(c)刚玉

    Figure  8.  Temperature rises of ceramic material intermediate surfaces under different heat exchange fluids: (a) quartz; (b) silicon carbide; (c) corundum

    表  1  仿真验证设置

    Table  1.   Simulation verification settings

    simulation
    number
    hot
    fluid
    Th,i/Kvh,i/(m·s−1)cold fluidTc,i/Kvc,i/(m·s−1)materialδ/cm
    1water3502water3001CaCO315
    2water3402benzene3001CaO10
    3water3603benzene3001CaSO410
    下载: 导出CSV

    表  2  时间常数

    Table  2.   Time constants

    simulation numberτh /sτm /sτc /s
    11 323.271 997.371 323.40
    2758.55962.79758.55
    33 047.154 222.933 047.15
    下载: 导出CSV

    表  3  三种情况下热流体物理性质及加热时间常数

    Table  3.   Physical properties and heating time constants of the thermal fluid in 3 cases

    caseρ/(kg/m3)cp /(J·kg−1·K−1)λ /(W·m−1·K−1)τh /(s)
    11 0004 1800.61 060.40
    28002 7000.41 148.27
    32 0003 6000.5953.58
    下载: 导出CSV

    表  4  换热流体物性参数[27]

    Table  4.   Physical parameters of heat exchanger fluids[27]

    fluidρ /(kg/m3)
    cp /(J·kg−1·K−1)
    λ /(W·m−1·K−1)υ/(m2/s)
    liquid lithium4802 016537.4×105
    liquid sodium8301 045662.9×105
    KF-ZrF42 8003 4440.551.82×106
    HTS1 8772 7770.592.26×106
    下载: 导出CSV

    表  5  储热材料物性参数[28]

    Table  5.   Physical parameters of heat storage materials[28]

    heat storage
    material
    density
    ρ /(kg/m3)
    cp /(J∙kg−1∙K−1)thermal conductivity
    λ /(W∙m−1·K−1)
    silicon refractory brick1 8201 0001.5
    magnesia refractory brick3 0001 1505
    reinforced concrete2 2008501.5
    cast iron7 20056037
    cast steel7 80060040
    下载: 导出CSV

    表  6  加热时间常数(单位:s)

    Table  6.   Heating time constants (unit: s)

    liquid lithiumliquid sodiumKF-ZrF4 saltHTS salt
    silicon refractory brick98.4699.67106.33108.29
    magnesia refractory brick63.6664.6865.5066.32
    reinforced concrete98.96100.58108.95109.25
    cast iron18.6918.4718.9219.06
    cast steel21.1221.0221.1921.36
    下载: 导出CSV

    表  7  陶瓷储热材料物性参数[30]

    Table  7.   Physical parameters of ceramic heat storage materials[30]

    ceramic materialρ /(kg/m3)cp /(J∙kg−1∙K−1)λ /(W∙m−1·K−1)
    quartz2300114011.5
    silicon carbide3100117065.4
    corundum320014002.2
    下载: 导出CSV

    表  8  高温气体物性参数[31]

    Table  8.   Physical parameters of high temperature gases[31]

    gasρ /(kg/m3)cp /(J∙kg−1∙K−1)λ /(W∙m−1·K−1)υ/(m2/s)
    CO21.3439420.02511.466×107
    air0.52410680.05216.309×107
    water vapor0.55492 0090.0272.392×107
    下载: 导出CSV

    表  9  加热时间常数(单位:s)

    Table  9.   Heating time constants (unit: s)

    CO2airwater vapor
    quartz298.31292.28296.26
    silicon carbide86.8986.4086.89
    corundum1638.531634.241640.83
    下载: 导出CSV
  • [1] 陈海生, 李泓, 马文涛, 等. 2021年中国储能技术研究进展[J]. 储能科学与技术, 2021, 11(3): 1052-1076

    CHEN Haisheng, LI Hong, MA Wentao, et al. Research progress of energy storage technology in China in 2021[J]. Energy Storage Science and Technology, 2021, 11(3): 1052-1076.(in Chinese)
    [2] 姜竹, 邹博杨, 丛琳, 等. 储热技术研究进展与展望[J]. 储能科学与技术, 2021, 38(5): 1-26

    JIANG Zhu, ZOU Boyang, CONG Lin, et al. Recent progress and outlook of thermal energy storage technologies[J]. Energy Storage Science and Technology, 2021, 38(5): 1-26.(in Chinese)
    [3] 汪翔, 陈海生, 徐玉杰, 等. 储热技术研究进展与趋势[J]. 科学通报, 2017, 62(15): 1602-1610 doi: 10.1360/N972016-00663

    WANG Xiang, CHEN Haisheng, XU Yujie, et al. Advances and prospects in thermal energy storage: a critical review[J]. Chinese Science Bulletin, 2017, 62(15): 1602-1610.(in Chinese) doi: 10.1360/N972016-00663
    [4] AL-SANEA S A, ZEDAN M F. Improving thermal performance of building walls by optimizing insulation layer distribution and thickness for same thermal mass[J]. Applied Energy, 2011, 88(9): 3113-3124. doi: 10.1016/j.apenergy.2011.02.036
    [5] KURAVI S, TRAHAN J, RAHMAN M M, et al. Analysis of transient heat transfer in a thermal energy storage module[C]//Proceedings of the ASME 2010 International Mechanical Engineering Congress and Exposition. Vancouver, Canada, 2010: 1251-1258.
    [6] LI Q, BAI F, YANG B, et al. Dynamic simulations of a honeycomb ceramic thermal energy storage in a solar thermal power plant using air as the heat transfer fluid[J]. Applied Thermal Engineering, 2018, 129: 636-645. doi: 10.1016/j.applthermaleng.2017.10.063
    [7] TAHER N B, BOUKADIDA N, LAJIMI N. Thermal response of a composite building envelope under the climatic conditions of Tunisia[C]//Proceedings of the 2018 9th International Renewable Energy Congress (IREC). Hammamet, Tunisia, 2018: 1-6.
    [8] 张荻, 郭帅, 谢永慧. 基于球窝结构冷却通道的强化传热数值及实验研究[J]. 应用数学和力学, 2014, 35(3): 254-263 doi: 10.3879/j.issn.1000-0887.2014.03.003

    ZHANG Di, GUO Shuai, XIE Yonghui. Numerical and experimental study of heat transfer enhancement based on the structure of cooling-channels with dimples[J]. Applied Mathematics and Mechanics, 2014, 35(3): 254-263.(in Chinese) doi: 10.3879/j.issn.1000-0887.2014.03.003
    [9] 马令勇, 朱永健, 郑雨蒙, 等. 含石蜡玻璃屋顶动态传热性能分析[J]. 热科学与技术, 2018, 17(6): 444-448

    MA Lingyong, ZHU Yongjian, ZHENG Yumeng, et al. Analysis of dynamic heat transfer performance of glass roof containing paraffin[J]. Journal of Thermal Science and Technology, 2018, 17(6): 444-448.(in Chinese)
    [10] PEDERSEN C. An experimental study of the dynamic behavior and heat transfer characteristics of water droplets impinging upon a heated surface[J]. International Journal of Heat and Mass Transfer, 1970, 13(2): 369-381. doi: 10.1016/0017-9310(70)90113-4
    [11] ARTMANN N, MANZ H, HEISELBERG P. Parametric study on the dynamic heat storage capacity of building elements[C]//Proceedings of the 28th AIVC Conference. Crete, Island, 2007 .
    [12] OZEL M. Effect of insulation location on dynamic heat-transfer characteristics of building external walls and optimization of insulation thickness[J]. Energy and Buildings, 2014, 72: 288-295. doi: 10.1016/j.enbuild.2013.11.015
    [13] 李长玉, 方彦奎, 刘福旭, 等. 热防护服-空气-皮肤热传导模型及其解析解[J]. 应用数学和力学, 2021, 42(2): 162-169

    LI Changyu, FANG Yankui, LIU Fuxu, et al. A thermal protective clothing-air-skin heat conduction model and its analytical solution[J]. Applied Mathematics and Mechanics, 2021, 42(2): 162-169.(in Chinese)
    [14] 周保良, 李志远, 黄丹. 二维瞬态热传导的PDDO分析[J]. 应用数学和力学, 2022, 43(6): 660-668

    ZHOU Baoliang, LI Zhiyuan, HUANG Dan. PDDO analysis of 2D transient heat conduction problems[J]. Applied Mathematics and Mechanics, 2022, 43(6): 660-668.(in Chinese)
    [15] OLIVETI G, ARCURI N, MAZZEO D, et al. A new parameter for the dynamic analysis of building walls using the harmonic method[J]. International Journal of Thermal Sciences, 2015, 88: 96-109. doi: 10.1016/j.ijthermalsci.2014.09.006
    [16] FRAISSE G, VIARDOT C, LAFABRIE O, et al. Development of a simplified and accurate building model based on electrical analogy[J]. Energy and Buildings, 2002, 34(10): 1017-1031. doi: 10.1016/S0378-7788(02)00019-1
    [17] LIU Y, LI L, WANG J. A novel relation for heat flow using Maxwell thermoelectricity analogy[J]. International Communications in Heat and Mass Transfer, 2020, 117: 104745. doi: 10.1016/j.icheatmasstransfer.2020.104745
    [18] 陈群, 郝俊红, 付荣桓, 等. 基于(火 积)理论的热系统分析和优化的能量流法[J]. 工程热物理学报, 2017, 38(7): 1376-1383

    CHEN Qun, HAO Junhong, FU Ronghuan, et al. Entransy-based power flow method for analysis and optimization of thermal systems[J]. Journal of Engineering Thermophysics, 2017, 38(7): 1376-1383.(in Chinese)
    [19] CHEN Q, HAO J H, ZHAO T. An alternative energy flow model for analysis and optimization of heat transfer systems[J]. International Journal of Heat and Mass Transfer, 2017, 108: 712-720. doi: 10.1016/j.ijheatmasstransfer.2016.12.080
    [20] CHEN Q, FU R H, XU Y C. Electrical circuit analogy for heat transfer analysis and optimization in heat exchanger networks[J]. Applied Energy, 2015, 139: 81-92. doi: 10.1016/j.apenergy.2014.11.021
    [21] ZHAO T, MIN Y, CHEN Q, et al. Electrical circuit analogy for analysis and optimization of absorption energy storage systems[J]. Energy, 2016, 104: 171-183. doi: 10.1016/j.energy.2016.03.120
    [22] HE K L, CHEN Q, LIU Y T, et al. A transient heat current model for dynamic performance analysis and optimal control of heat transfer system[J]. International Journal of Heat and Mass Transfer, 2019, 145: 118767. doi: 10.1016/j.ijheatmasstransfer.2019.118767
    [23] 邵卫, 陈群, 贺克伦, 等. 换热器动态特性分析的热量流模型[J]. 工程热物理学报, 2020, 41(11): 2828-2833

    SHAO Wei, CHEN Qun, HE Kelun, et al. Heat current model for analying the dynamic characteristic of heat exchangers[J]. Journal of Engineering Thermophysics, 2020, 41(11): 2828-2833.(in Chinese)
    [24] DUAN J, LI N, PENG J, et al. Full-response model of transient heat transfer of building walls using thermoelectric analogy method[J]. Journal of Building Engineering, 2022, 46: 103717. doi: 10.1016/j.jobe.2021.103717
    [25] HE K L, CHEN Q, DONG E F, et al. An improved unit circuit model for transient heat conduction performance analysis and optimization in multi-layer materials[J]. Applied Thermal Engineering, 2018, 129: 1551-1562. doi: 10.1016/j.applthermaleng.2017.10.149
    [26] 杨婧, 唐岚, 赵开联, 等. 基于热电比拟模型的电热综合能源优化调度[J]. 电力科学与工程, 2022, 38(5): 60-67 doi: 10.3969/j.ISSN.1672-0792.2022.05.008

    YANG Jing, TANG Lan, ZHAO Kailian, et al. Optimization scheduling of integrated electric heating energy system based on thermoelectric analogy model[J]. Electric Power Science and Engineering, 2022, 38(5): 60-67.(in Chinese) doi: 10.3969/j.ISSN.1672-0792.2022.05.008
    [27] 谢刚. 熔融盐理论与应用[M]. 北京: 冶金工业出版社, 1998.

    XIE Gang. Theory and Application of Molten Salt[M]. Beijing: Metallurgical Industry Press, 1998. (in Chinese)
    [28] GEYER M. Thermal Storage for Solar Power Plants[M]. Springer, 1991: 199-214.
    [29] 任雪潭, 曾令可, 刘艳春, 等. 蓄热储能多孔陶瓷材料[J]. 陶瓷学报, 2006, 27(2): 217-226 doi: 10.3969/j.issn.1000-2278.2006.02.013

    REN Xuetan, ZENG Lingke, LIU Yanchun, et al. Porous ceramic materials for heat and energy storage[J]. Journal of Ceramics, 2006, 27(2): 217-226.(in Chinese) doi: 10.3969/j.issn.1000-2278.2006.02.013
    [30] 李爱菊, 王毅, 张仁元, 等. 蓄热室新型蓄热体的研究进展[J]. 冶金能源, 2007, 36(1): 43-48 doi: 10.3969/j.issn.1001-1617.2007.03.012

    LI Aiju, WANG Yi, ZHANG Renyuan, et al. Research deveiopment of new type regenerative materials in regenerator chamber[J]. Energy for Metallurgical Industry, 2007, 36(1): 43-48.(in Chinese) doi: 10.3969/j.issn.1001-1617.2007.03.012
    [31] 陶文铨. 传热学[M]. 5版. 北京: 高等教育出版社, 2018.

    TAO Wenquan. Heat Transfer[M]. 5th ed. Beijing: Higher Education Press, 2018. (in Chinese)
  • 加载中
图(8) / 表(9)
计量
  • 文章访问数:  261
  • HTML全文浏览量:  140
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-12
  • 修回日期:  2022-08-23
  • 网络出版日期:  2022-10-11
  • 刊出日期:  2022-11-30

目录

    /

    返回文章
    返回