留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

曲率障碍下四阶变分不等式的交替方向乘子法

张霖森 程兰 张守贵

张霖森, 程兰, 张守贵. 曲率障碍下四阶变分不等式的交替方向乘子法[J]. 应用数学和力学, 2023, 44(5): 595-604. doi: 10.21656/1000-0887.430243
引用本文: 张霖森, 程兰, 张守贵. 曲率障碍下四阶变分不等式的交替方向乘子法[J]. 应用数学和力学, 2023, 44(5): 595-604. doi: 10.21656/1000-0887.430243
ZHANG Linsen, CHENG Lan, ZHANG Shougui. An Alternating Direction Multiplier Method for 4th-Order Variational Inequalities With Curvature Obstacle[J]. Applied Mathematics and Mechanics, 2023, 44(5): 595-604. doi: 10.21656/1000-0887.430243
Citation: ZHANG Linsen, CHENG Lan, ZHANG Shougui. An Alternating Direction Multiplier Method for 4th-Order Variational Inequalities With Curvature Obstacle[J]. Applied Mathematics and Mechanics, 2023, 44(5): 595-604. doi: 10.21656/1000-0887.430243

曲率障碍下四阶变分不等式的交替方向乘子法

doi: 10.21656/1000-0887.430243
基金项目: 

国家自然科学基金项目 11971085

重庆市自然科学基金项目 cstc2020jcyj-msxmX0066

重庆市研究生教育教学改革研究项目 yjg213071

重庆市研究生科研创新项目 CYS22561

详细信息
    作者简介:

    张霖森(1997—),男,硕士生(E-mail: 398780730@qq.com)

    通讯作者:

    张守贵(1973—),男,教授,博士(通讯作者. E-mail: shgzhang@cqnu.edu.cn)

  • 中图分类号: O241.82

An Alternating Direction Multiplier Method for 4th-Order Variational Inequalities With Curvature Obstacle

  • 摘要: 对于重调和算子和曲率障碍表示的变分不等式,提出了自适应交替方向乘子数值解法(SADMM). 对问题引入一个辅助变量表示曲率函数的增广Lagrange函数,导出一个约束极小值问题,并且该问题等价于一个鞍点问题. 然后采用交替方向乘子法(ADMM)求解这个鞍点问题. 通过采用平衡原理和迭代函数,得到了自动调整罚参数的自适应法则,从而提高了计算效率. 证明了该方法的收敛性,并给出了利用迭代函数近似罚参数的具体方法. 最后,用数值计算结果验证了该方法的有效性.
  • 图  1  u的数值解

    Figure  1.  Numerical solutions of u

    图  2  -Δu的数值解

    Figure  2.  Numerical solutions of -Δu

    图  3  精确解u

    Figure  3.  Analytical solutions of u

    图  4  逐点误差

    Figure  4.  Pointwise errors between numerical and analytical solutions

    表  1  算法随步长变化所需迭代次数的情况

    Table  1.   The numbers of iterations required for the algorithm to change with the step size

    ρ algorithm 1 (ADMM) algorithm 2 (SADMM)
    h=1/10 h=1/20 h=1/40 h=1/80 h=1/10 h=1/20 h=1/40 h=1/80
    10-2 * * * * 25 28 24 28
    10-1 * * * * 26 34 29 34
    100 47 59 93 101 30 39 33 39
    101 * * * * 32 41 35 41
    102 * * * * 33 42 36 42
    103 * * * * 34 43 37 43
    104 * * * * 35 44 38 44
    下载: 导出CSV

    表  2  算法随步长变化所需CPU时间情况

    Table  2.   CPU times required for the algorithm to change with the step size

    ρ algorithm 1 (ADMM) algorithm 2 (SADMM)
    h=1/10 h=1/20 h=1/40 h=1/80 h=1/10 h=1/20 h=1/40 h=1/80
    10-2 * * * * 0.117 5 0.255 1 1.911 9 80.095 4
    10-1 * * * * 0.020 0 0.174 4 2.126 9 95.011 4
    100 0.035 5 0.276 9 6.770 4 280.995 9 0.021 8 0.178 1 2.521 3 109.381 1
    101 * * * * 0.024 8 0.168 2 2.647 1 114.965 5
    102 * * * * 0.024 2 0.181 6 2.620 6 117.895 8
    103 * * * * 0.024 3 0.172 3 2.791 4 120.384 8
    104 * * * * 0.025 6 0.183 3 2.875 5 123.236 0
    下载: 导出CSV
  • [1] CUI J T, ZHANG Y. A new analysis of discontinuous Galerkin methods for a fourth order variational inequality[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 351(1): 531-547.
    [2] 郭楠馨, 张守贵. 自由边界问题的自适应Uzawa块松弛算法[J]. 应用数学和力学, 2019, 40(6): 682-693. doi: 10.21656/1000-0887.390347

    GUO Nanxin, ZHANG Shougui. Self-adaptive Uzawa block relaxation method for the free boundary problem[J]. Applied Mathematics and Mechanics, 2019, 40(6): 682-693. (in Chinese) doi: 10.21656/1000-0887.390347
    [3] GUSTAFSSON T, STENBERG R, VIDEMAN J. A stabilized finite element method for the plate obstacle problem[J]. BIT Numerical Mathematics, 2019, 59(1): 97-124. doi: 10.1007/s10543-018-0728-7
    [4] LI M, GUAN X, MAO S. New error estimates of the Morley element for the plate bending problems[J]. Journal of Computational and Applied Mathematics, 2014, 26(3): 405-416. http://www.cugb.edu.cn/uploadCms/file/20600/papers_upload/20140930105957094469.pdf
    [5] 饶玲. 单调迭代结合虚拟区域法求解非线性障碍问题[J]. 应用数学和力学, 2018, 39(4): 485-492. doi: 10.21656/1000-0887.380109

    RAO Ling. Monotone iterations combined with fictitious domain methods for numerical solution of nonlinear obstacle problems[J]. Applied Mathematics and Mechanics, 2018, 39(4): 485-492. (in Chinese) doi: 10.21656/1000-0887.380109
    [6] 王霄婷, 龙宪军, 彭再云. 求解非单调变分不等式的一种二次投影算法[J]. 应用数学和力学, 2022, 43(8): 927-934. doi: 10.21656/1000-0887.420414

    WANG Xiaoting, LONG Xianjun, PENG Zaiyun. A double projection algorithm for solving non-monotone variational inequalities[J]. Applied Mathematics and Mechanics, 2022, 43(8): 927-934. (in Chinese) doi: 10.21656/1000-0887.420414
    [7] AL-SAID E A, NOOR M A, KAYA D. Finite difference method for solving fourth-order obstacle problems[J]. International Journal of Computer Mathematics, 2004, 81(6): 741-748. doi: 10.1080/00207160410001661654
    [8] GLOWINSKI R, MARINI L D, VIDRASCU M. Finite-element approximations and iterative solutions of a fourth-order elliptic variational inequality[J]. IMA Journal of Numerical Analysis, 1984, 4(2): 127-167. doi: 10.1093/imanum/4.2.127
    [9] SHI D Y, CHEN S C, HAGIWARA I. Highly nonconforming finite element approximations for a fourth order variational inequality with curvature obstacle[J]. Journal of Systems Science and Complexity, 2005, 18(1): 136-142. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=XTYW200501015
    [10] ZHANG S G, GUO N X. Uzawa block relaxation method for free boundary problem with unilateral obstacle[J]. International Journal of Computer Mathematics, 2021, 98(4): 671-689. doi: 10.1080/00207160.2020.1777402
    [11] ESSOUFI E H, KOKO J, ZAFRAR A. Alternating direction method of multiplier for a unilateral contact problem in electro-elastostatics[J]. Computers & Mathematics With Applications, 2017, 73(8): 1789-1802. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0898122117301062&originContentFamily=serial&_origin=article&_ts=1491406629&md5=807865dba836e8cb2a960afd9226280c
    [12] KOKO J. Uzawa block relaxation method for the unilateral contact problem[J]. Journal of Computational and Applied Mathematics, 2011, 235(8): 2343-2356. http://www.onacademic.com/detail/journal_1000034579755210_10ce.html
    [13] 张茂林, 冉静, 张守贵. 具有滑动边界条件Stokes问题的自适应Uzawa块松弛算法[J]. 应用数学和力学, 2021, 42(2): 188-198. doi: 10.21656/1000-0887.410170

    ZHANG Maolin, RAN Jing, ZHANG Shougui. A self-adaptive Uzawa block relaxation method for Stokes problems with slip boundary conditions[J]. Applied Mathematics and Mechanics, 2021, 42(2): 188-198. (in Chinese) doi: 10.21656/1000-0887.410170
    [14] ICHIRO H. Highly nonconforming finite element approximations for a fourth order variational inequality with curvature obstacle[J]. Journal of Systems Science and Complexity, 2005, 18(1): 136-142. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=XTYW200501015
    [15] CAO W, YANG D. Adaptive optimal control approximation for solving a fourth-order elliptic variational inequality[J]. Computers & Mathematics With Applications, 2014, 66(12): 2517-2531. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0898122113005853&originContentFamily=serial&_origin=article&_ts=1437831935&md5=6cbc7dab618e6d86736c8e5eec00aa0e
    [16] GLOWINSKI R. Numerical Methods for Nonlinear Variational Problems[M]. Berlin: Spring-Verlag, 2008.
    [17] SCHOLZ R. Mixed finite element approximation of a fourth order variational inequality by the penalty method[J]. Numerical Functional Analysis and Optimization, 2007, 9(3/4): 233-247. http://www.ams.org/mathscinet-getitem?mr=887070
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  444
  • HTML全文浏览量:  136
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-23
  • 修回日期:  2022-09-19
  • 刊出日期:  2023-05-01

目录

    /

    返回文章
    返回