留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带Caputo导数的变分数阶随机微分方程的Euler-Maruyama方法

刘家惠 邵林馨 黄健飞

刘家惠, 邵林馨, 黄健飞. 带Caputo导数的变分数阶随机微分方程的Euler-Maruyama方法[J]. 应用数学和力学, 2023, 44(6): 731-743. doi: 10.21656/1000-0887.430250
引用本文: 刘家惠, 邵林馨, 黄健飞. 带Caputo导数的变分数阶随机微分方程的Euler-Maruyama方法[J]. 应用数学和力学, 2023, 44(6): 731-743. doi: 10.21656/1000-0887.430250
LIU Jiahui, SHAO Linxin, HUANG Jianfei. An Euler-Maruyama Method for Variable Fractional Stochastic Differential Equations With Caputo Derivatives[J]. Applied Mathematics and Mechanics, 2023, 44(6): 731-743. doi: 10.21656/1000-0887.430250
Citation: LIU Jiahui, SHAO Linxin, HUANG Jianfei. An Euler-Maruyama Method for Variable Fractional Stochastic Differential Equations With Caputo Derivatives[J]. Applied Mathematics and Mechanics, 2023, 44(6): 731-743. doi: 10.21656/1000-0887.430250

带Caputo导数的变分数阶随机微分方程的Euler-Maruyama方法

doi: 10.21656/1000-0887.430250
基金项目: 

江苏省自然科学基金项目 BK20201427

国家自然科学基金项目 11701502

国家自然科学基金项目 11871065

详细信息
    作者简介:

    刘家惠(1998—), 女, 硕士生(E-mail: 965440574@qq.com)

    通讯作者:

    黄健飞(1983—), 男, 副教授, 博士(通讯作者. E-mail: jfhuang@lsec.cc.ac.cn)

  • 中图分类号: O211.5;O241.8

An Euler-Maruyama Method for Variable Fractional Stochastic Differential Equations With Caputo Derivatives

  • 摘要: 该文构造了Euler-Maruyama(EM)方法求解一类带Caputo导数的变分数阶随机微分方程. 首先, 证明了该方程的适定性; 然后, 详细推导出对应的EM方法, 并对该方法进行了强收敛性的分析, 通过使用EM方法的连续形式证明了其强收敛阶为β-0.5, 其中β是Caputo导数的阶数,且满足0.5 < β < 1. 最后, 通过数值实验验证了理论分析结果的正确性.
  • 表  1  β=0.9时,EM方法的误差与收敛阶

    Table  1.   Errors and convergence orders of the EM method for β=0.9

    h α1=0.2, α2=0.6 α1=0.6, α2=0.2
    error eh convergence order nco error eh convergence order nco
    1/32 0.180 197 - 0.180 329 -
    1/64 0.135 958 0.406 0.135 998 0.407
    1/128 0.101 704 0.419 0.101 716 0.419
    1/256 0.076 984 0.402 0.076 986 0.402
    下载: 导出CSV

    表  2  β=0.8时,EM方法的误差与收敛阶

    Table  2.   Errors and convergence orders of the EM method for β=0.8

    h α1=0.2, α2=0.5 α1=0.5, α2=0.2
    error eh convergence order nco error eh convergence order nco
    1/32 0.251 476 - 0.251 654 -
    1/64 0.202 993 0.310 0.203 053 0.310
    1/128 0.162 630 0.320 0.162 650 0.320
    1/256 0.131 342 0.308 0.131 333 0.309
    下载: 导出CSV

    表  3  β=0.7时,EM方法的误差与收敛阶

    Table  3.   Errors and convergence orders of the EM method for β=0.7

    h α1=0.1, α2=0.5 α1=0.5, α2=0.1
    error eh convergence order nco error eh convergence order nco
    1/32 0.343 325 - 0.343 776 -
    1/64 0.296 312 0.212 0.296 487 0.214
    1/128 0.254 176 0.221 0.254 244 0.222
    1/256 0.218 904 0.216 0.223 625 0.185
    下载: 导出CSV
  • [1] CHEN W, SUN H G, ZHANG X D, et al. Anomalous diffusion modeling by fractal and fractional derivatives[J]. Computers and Mathematics With Applications, 2010, 59(5): 1754-1758. doi: 10.1016/j.camwa.2009.08.020
    [2] SUN H G, CHEN W, CHEN Y Q. Variable-order fractional differential operators in anomalous diffusion modeling[J]. Physica A: Statistical Mechanics and Its Applications, 2009, 388(21): 4586-4592. doi: 10.1016/j.physa.2009.07.024
    [3] KILBAS A A, SRIVASTAVA H M, TRUJILLO J J. Theory and Applications of Fractional Differential Equations[M]. Amsterdam: Elsevier Science, 2006.
    [4] ROSSIKHIN Y A, SHITIKOVA M V. Application of fractional derivatives to the analysis of damped vibrations of viscoelastic single mass systems[J]. Acta Mechanica, 1997, 120(1): 109-125.
    [5] AHMED E, ELGAZZAR A S. On fractional order differential equations model for nonlocal epidemics[J]. Physica A: Statistical Mechanics and Its Applications, 2007, 379(2): 607-614. doi: 10.1016/j.physa.2007.01.010
    [6] TAJADODI H, KHAN Z A, IRSHAD A, et al. Exact solutions of conformable fractional differential equations[J]. Results in Physics, 2021, 22(1): 103916.
    [7] KHODABIN M, MALEKNEJAD K, ASGARI M. Numerical solution of a stochastic population growth model in a closed system[J]. Advances in Difference Equations, 2013, 2013(1): 130. doi: 10.1186/1687-1847-2013-130
    [8] SHAH A, KHAN R A, KHAN A, et al. Investigation of a system of nonlinear fractional order hybrid differential equations under usual boundary conditions for existence of solution[J]. Mathematical Methods in the Applied Sciences, 2021, 44(2): 1628-1638. doi: 10.1002/mma.6865
    [9] 朱帅润, 李绍红, 钟彩尹, 等. 时间分数阶的非饱和渗流数值分析及其应用[J]. 应用数学和力学, 2022, 43(9): 966-975. doi: 10.21656/1000-0887.420334

    ZHU Shuairun, LI Shaohong, ZHONG Caiyin, et al. Numerical analysis of time fractional-order unsaturated flow and its application[J]. Applied Mathematics and Mechanics, 2022, 43(9): 966-975. (in Chinese) doi: 10.21656/1000-0887.420334
    [10] ALSHEHRI M H, DURAIHEM F Z, ALALYANI A, et al. A Caputo (discretization) fractional-order model of glucose-insulin interaction: numerical solution and comparisons with experimental data[J]. Journal of Taibah University for Science, 2021, 15(1): 26-36. doi: 10.1080/16583655.2021.1872197
    [11] LIU F W, ANH V, TURNER I. Numerical solution of the space fractional Fokker-Planck equation[J]. Journal of Computational and Applied Mathematics, 2004, 166(1): 209-219. doi: 10.1016/j.cam.2003.09.028
    [12] 高兴华, 李宏, 刘洋. 非线性分数阶常微分方程的分段线性插值多项式方法[J]. 应用数学和力学, 2021, 42(5): 531-540. doi: 10.21656/1000-0887.410149

    GAO Xinghua, LI Hong, LIU Yang. A piecewise linear interpolation polynomial method for nonlinear fractional ordinary differential equations[J]. Applied Mathematics and Mechanics, 2021, 42(5): 531-540. (in Chinese) doi: 10.21656/1000-0887.410149
    [13] GARRAPPA R. Numerical solution of fractional differential equations: a survey and a software tutorial[J]. Mathematics, 2018, 6(2): 16. doi: 10.3390/math6020016
    [14] JING Y Y, LI Z, XU L P. The averaging principle for stochastic fractional partial differential equations with fractional noises[J]. Journal of Partial Differential Equations, 2021, 34: 51-66. doi: 10.4208/jpde.v34.n1.4
    [15] GUO Z K, FU H B, WANG W Y. An averaging principle for Caputo fractional stochastic differential equations with compensated Poisson random measure[J]. Journal of Partial Differential Equations, 2021, 35: 1-10.
    [16] HIGHAM D J. Stochastic ordinary differential equations in applied and computational mathematics[J]. IMA Journal of Applied Mathematics, 2011, 76(3): 449-474. doi: 10.1093/imamat/hxr016
    [17] MAO X R. The truncated Euler-Maruyama method for stochastic differential equations[J]. Journal of Computational and Applied Mathematics, 2015, 290: 370-384. doi: 10.1016/j.cam.2015.06.002
    [18] 钱思颖, 张静娜, 黄健飞. 带有弱奇性核的多项分数阶非线性随机微分方程的改进Euler-Maruyama格式[J]. 应用数学和力学, 2021, 42(11): 1203-1212. doi: 10.21656/1000-0887.420067

    QIAN Siying, ZHANG Jingna, HUANG Jianfei. A modified Euler-Maruyama scheme for multi-term fractional nonlinear stochastic differential equations with weakly singular kernels[J]. Applied Mathematics and Mechanics, 2021, 42(11): 1203-1212. (in Chinese) doi: 10.21656/1000-0887.420067
    [19] WANG H T, ZHENG X C. Wellposedness and regularity of the variable-order time-fractional diffusion equations[J]. Journal of Mathematical Analysis and Applications, 2019, 475(2): 1778-1802. doi: 10.1016/j.jmaa.2019.03.052
    [20] YANG Z W, ZHENG X C, ZHANG Z Q, et al. Strong convergence of Euler-Maruyama scheme to a variable-order fractional stochastic differential equation driven by a multiplicative white noise[J]. Chaos, Solitons and Fractals, 2021, 142: 110392. doi: 10.1016/j.chaos.2020.110392
    [21] 薛益民, 戴振祥, 刘洁. 一类Riemann-Liouville型分数阶微分方程正解的存在性[J]. 华南师范大学学报(自然科学版), 2019, 51(2): 105-109. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF201902017.htm

    XUE Yimin, DAI Zhenxiang, LIU Jie. On the existence of positive solutions to a type of Riemann-Liouville fractional differential equations[J]. Journal of South China Normal University (Natural Science Edition), 2019, 51(2): 105-109. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF201902017.htm
    [22] TUAN N H, MOHAMMADI H, REZAPOUR S. A mathematical model for COVID-19 transmission by using the Caputo fractional derivative[J]. Chaos, Solitons and Fractals, 2020, 140: 110107. doi: 10.1016/j.chaos.2020.110107
    [23] 张敬凯, 徐家发, 柏仕坤. 一类Caputo型分数阶微分方程边值问题多正解的存在性[J]. 重庆师范大学学报(自然科学版), 2022, 39(4): 87-91. https://www.cnki.com.cn/Article/CJFDTOTAL-CQSF202204012.htm

    ZHANG Jingkai, XU Jiafa, BAI Shikun. Existence of multiple positive solutions for a class of Caputo type fractional differential equations boundary value problems[J]. Journal of Chongqing Normal University (Natural Science), 2022, 39(4): 87-91. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CQSF202204012.htm
    [24] DELAVARI H, BALEANU D, SADATI J. Stability analysis of Caputo fractional-order nonlinear systems revisited[J]. Nonlinear Dynamics, 2012, 67(4): 2433-2439.
    [25] SON D T, HUONG P T, KLOOEDEN P E, et al. Asymptotic separation between solutions of Caputo fractional stochastic differential equations[J]. Stochastic Analysis and Applications, 2018, 36(4): 654-664.
    [26] SONJA C, MARTIN H, ARNULF J. Convergence in Hölder norms with applications to Monte Carlo methods in infinite dimensions[J]. IMA Journal of Numerical Analysis, 2021, 41(1): 493-548.
    [27] CONT R, FOURNIE D. A functional extension of the Ito formula[J]. Comptes Rendus Mathematique, 2010, 348(1): 57-61.
    [28] CONG N, SON D, TUAN H. On fractional Lyapunov exponent for solutions of linear fractional differential equations[J]. Fractional Calculus and Applied Analysis, 2014, 17(2): 285-306.
    [29] SAMKO S G, KILBAS A A, MARICHEV O I. Fractional Integrals and Derivatives: Theory and Applications[M]. New York: Gordon and Breach, 1993.
    [30] HUANG J F, TANG Y F, VAZQUEZ L. Convergence analysis of a block-by-block method for fractional differential equations[J]. Numerical Mathematics: Theory, Methods and Applications, 2012, 5: 229-241.
  • 加载中
计量
  • 文章访问数:  385
  • HTML全文浏览量:  110
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-04
  • 修回日期:  2022-11-29
  • 刊出日期:  2023-06-01

目录

    /

    返回文章
    返回