留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有群体防御的捕食-被捕食模型适应性进化分析

李诗琪 唐三一

李诗琪,唐三一. 具有群体防御的捕食-被捕食模型适应性进化分析 [J]. 应用数学和力学,2023,44(3):319-332 doi: 10.21656/1000-0887.430251
引用本文: 李诗琪,唐三一. 具有群体防御的捕食-被捕食模型适应性进化分析 [J]. 应用数学和力学,2023,44(3):319-332 doi: 10.21656/1000-0887.430251
LI Shiqi, TANG Sanyi. Adaptive Evolution Analysis of a Predator-Prey Model With Group Defense[J]. Applied Mathematics and Mechanics, 2023, 44(3): 319-332. doi: 10.21656/1000-0887.430251
Citation: LI Shiqi, TANG Sanyi. Adaptive Evolution Analysis of a Predator-Prey Model With Group Defense[J]. Applied Mathematics and Mechanics, 2023, 44(3): 319-332. doi: 10.21656/1000-0887.430251

具有群体防御的捕食-被捕食模型适应性进化分析

doi: 10.21656/1000-0887.430251
基金项目: 国家自然科学基金(12031010)
详细信息
    作者简介:

    李诗琪(1998—),女,硕士(E-mail:lishiqi@snnu.edu.cn)

    唐三一(1970—),男,教授,博士(通讯作者. E-mail:sytang@snnu.edu.cn)

  • 中图分类号: O29

Adaptive Evolution Analysis of a Predator-Prey Model With Group Defense

  • 摘要:

    基于适应性动力学的理论框架,该文研究了具有群体防御效应的功能反应函数的捕食-被捕食模型关于捕食者处理时间的进化问题。首先,考虑捕食者种群具有种间竞争的相互作用,研究单个捕食者种群能否通过进化分支分裂为两个策略不同的种群。其次,考虑研究当模型生态平衡态不稳定,系统出现周期振荡的极限环时,种群共存在进化上的稳定性。最后,与具有Holling-Ⅱ型功能反应函数的相关模型结论进行对比分析,通过分析猎物承载能力对可行策略的影响,揭示群体防御效应对捕食者进化策略的影响。

  • 图  1  $ \gamma_1(h) $为转换因子的单个捕食者种群和猎物种群的动力学性质

    注 为了解释图中的颜色,读者可以参考本文的电子网页版本,后同。

    Figure  1.  Dynamics of the individual predator and prey populations with $ \gamma_1(h) $ as conversion factors

    图  2  使用$ \gamma_1(h) $获得的PIP

    Figure  2.  PIP related to function $ \gamma_1(h) $

    图  3  $ \gamma_2(h) $为转换因子的单个捕食者种群和猎物种群的动力学性质

    Figure  3.  Dynamics of the individual predator and prey populations with $ \gamma_2(h) $ as conversion factors

    图  4  使用$ \gamma_2(h) $获得的PIP

    Figure  4.  PIP related to function $ \gamma_2(h) $

    图  5  PIP和MIP(参数1):(a)使用$ \gamma_2(h) $获得的PIP;(b)使用$ \gamma_2(h) $获得的MIP

    Figure  5.  PIP and MIP (parameter 1): (a) PIP related to function $ \gamma_2(h) $; (b) MIP related to function $ \gamma_2(h) $

    图  6  PIP和MIP(参数2):(a)使用$ \gamma_2(h) $获得的PIP;(b)使用$ \gamma_2(h) $获得的MIP

    Figure  6.  PIP and MIP (parameter 2): (a) PIP related to function $ \gamma_2(h) $; (b) MIP related to function $ \gamma_2(h) $

    图  7  $ {\varDelta _1} $$ {\varDelta _2} $与猎物承载能力K的关系图

    Figure  7.  The relations between ${\varDelta _1}({\varDelta _2})$ and prey carrying capacity K

    图  8  $ {\varDelta _{{H_1}}} $$ {\varDelta _{{H_2}}} $与猎物承载能力K的关系图

    Figure  8.  The relations between ${\varDelta _{{H_1}}} ( {\varDelta _{{H_2}}} )$ and prey carrying capacity K

  • [1] 李自珍, 韩晓卓, 李文龙. 具有生态位构建作用的种群进化动力学模型及其应用研究[J]. 应用数学和力学, 2006, 27(3): 293-299 doi: 10.3321/j.issn:1000-0887.2006.03.007

    LI Zizhen, HAN Xiaozhuo, LI Wenlong. Evolutionary dynamic model of population with niche construction and its application research[J]. Applied Mathematics and Mechanics, 2006, 27(3): 293-299.(in Chinese) doi: 10.3321/j.issn:1000-0887.2006.03.007
    [2] DERCOLE F, RINALDI S. Analysis of Evolutionary Processes: the Adaptive Dynamics Approach and Its Applications[M]. Princeton University Press, 2008.
    [3] RUEFFLER C, VAN DOOREN T J M, METZ J A J. Adaptive walks on changing landscapes: Levins’ approach extended[J]. Theoretical Population Biology, 2004, 65(2): 165-178. doi: 10.1016/j.tpb.2003.10.001
    [4] METZ J A J, NISBET R M, GERITZ S A H. How should we define ‘fitness’ for general ecological scenarios?[J]. Trends in Ecology & Evolution, 1992, 7(6): 198-202.
    [5] DIECKMANN U, LAW R. The dynamical theory of coevolution: a derivation from stochastic ecological processes[J]. Journal of Mathematical Biology, 1996, 34(5): 579-612.
    [6] GERITZ S A H, KISDI E, METZ J A J, et al. Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree[J]. Evolutionary Ecology, 1998, 12(1): 35-57. doi: 10.1023/A:1006554906681
    [7] ZU J, WANG J, DU J. Adaptive evolution of defense ability leads to diversification of prey species[J]. Acta Biotheoretica, 2014, 62(2): 207-234. doi: 10.1007/s10441-014-9218-8
    [8] HARDIN G. The competitive exclusion principle[J]. Science, 1960, 131(3409): 1292-1297. doi: 10.1126/science.131.3409.1292
    [9] VOLTERRA V. Variazioni e Flluttuazioni del Numero D’individui in Specie Animali Conviventi[M]. Società Anonima Tipografica “Leonardo da Vinci”, 1926.
    [10] MACARTHUR R H, LEVINS R. Competition, habitat selection, and character displacement in a patchy environment[J]. Proceedings of the National Academy of Sciences, 1964, 51(6): 1207-1210. doi: 10.1073/pnas.51.6.1207
    [11] TSOULARIS A. A learning strategy for predator preying on edible and inedible prey[J]. Acta Biotheoretica, 2007, 55(3): 283-295. doi: 10.1007/s10441-007-9020-y
    [12] ITO H C, SHIMADA M, IKEGAMI T. Coevolutionary dynamics of adaptive radiation for food-web development[J]. Population Ecology, 2009, 51(1): 65-81. doi: 10.1007/s10144-008-0113-5
    [13] YAMAGUCHI W, KONDOH M, KAWATA M. Effects of evolutionary changes in prey use on the relationship between food web complexity and stability[J]. Population Ecology, 2011, 53(1): 59-72. doi: 10.1007/s10144-010-0212-y
    [14] ROSENZWEIG M L, MACARTHUR R H. Graphical representation and stability conditions of predator-prey interactions[J]. The American Naturalist, 1963, 97(895): 209-223. doi: 10.1086/282272
    [15] ARMSTRONG R A, MCGEHEE R. Competitive exclusion[J]. The American Naturalist, 1980, 115(2): 151-170. doi: 10.1086/283553
    [16] ABRAMS P A, HOLT R D. The impact of consumer-resource cycles on the coexistence of competing consumers[J]. Theoretical Population Biology, 2002, 62(3): 281-295. doi: 10.1006/tpbi.2002.1614
    [17] 柳文清, 陈清婉. 捕食者食饵均染病的入侵反应扩散捕食系统中扩散的作用[J]. 应用数学和力学, 2019, 40(3): 321-331 doi: 10.1007/s10483-019-2443-9

    LIU Wenqing, CHEN Qingwan. Influence of diffusion on an invasion diffusion prey-predator model with disease infection in both populations[J]. Applied Mathematics and Mechanics, 2019, 40(3): 321-331.(in Chinese) doi: 10.1007/s10483-019-2443-9
    [18] KISDI E, LIU S. Evolution of handling time can destroy the coexistence of cycling predators[J]. Journal of Evolutionary Biology, 2006, 19(1): 49-58. doi: 10.1111/j.1420-9101.2005.00993.x
    [19] GERITZ S A H, KISDI E, YAN P. Evolutionary branching and long-term coexistence of cycling predators: critical function analysis[J]. Theoretical Population Biology, 2007, 71(4): 424-435. doi: 10.1016/j.tpb.2007.03.006
    [20] SOKOL W, HOWELL J A. Kinetics of phenol oxidation by washed cells[J]. Biotechnology and Bioengineering, 1981, 23(9): 2039-2049. doi: 10.1002/bit.260230909
    [21] METZ J A J, GERITZ S A H, MESZENA G, et al. Adaptive dynamics: a geometrical study of the consequences of nearly faithful reproduction: Working Papers wp95099[R]. International Institute for Applied Systems Analysis, 1995.
    [22] XIAO D, RUAN S. Global analysis in a predator-prey system with nonmonotonic functional response[J]. SIAM Journal on Applied Mathematics, 2001, 61(4): 1445-1472. doi: 10.1137/S0036139999361896
    [23] CHRISTIANSEN F B. On conditions for evolutionary stability for a continuously varying character[J]. The American Naturalist, 1991, 138(1): 37-50. doi: 10.1086/285203
    [24] SMITH J M. Evolution and the Theory of Games[M]. Cambridge: Cambridge University Press, 1982.
    [25] DE MAZANCOURT C, DIECKMANN U. Trade-off geometries and frequency-dependent selection[J]. The American Naturalist, 2004, 164(6): 765-778. doi: 10.1086/424762
    [26] ESHEL I. Evolutionary and continuous stability[J]. Journal of Theoretical Biology, 1983, 103(1): 99-111. doi: 10.1016/0022-5193(83)90201-1
    [27] CRESSMAN R. CSS, NIS and dynamic stability for two-species behavioral models with continuous trait spaces[J]. Journal of Theoretical Biology, 2010, 262(1): 80-89. doi: 10.1016/j.jtbi.2009.09.019
    [28] GERITZ S A H. Resident-invader dynamics and the coexistence of similar strategies[J]. Journal of Mathematical Biology, 2005, 50(1): 67-82. doi: 10.1007/s00285-004-0280-8
    [29] ZU J, WANG K, MIMURA M. Evolutionary branching and evolutionarily stable coexistence of predator species: critical function analysis[J]. Mathematical Biosciences, 2011, 231(2): 210-224. doi: 10.1016/j.mbs.2011.03.007
    [30] MYLIUS S D, DIEKMANN O. On evolutionarily stable life histories, optimization and the need to be specific about density dependence[J]. Oikos, 1995, 74(2): 218-224. doi: 10.2307/3545651
    [31] METZ J AJ, MYLIUS S D, DIEKMANN O. When does evolution optimize? On the relationship between evolutionary stability, optimization and density dependence: Working Papers wp96004[R]. International Institute for Applied Systems Analysis, 1996.
    [32] MESZENA G, KISDI E, DIECKMANN U, et al. Evolutionary optimisation models and matrix games in the unified perspective of adaptive dynamics[J]. Selection, 2002, 2(1/2): 193-220. doi: 10.1556/Select.2.2001.1-2.14
    [33] FREEDMAN H I, WOLKOWICZ G S K. Predator-prey systems with group defence: the paradox of enrichment revisited[J]. Bulletin of Mathematical Biology, 1986, 48(5/6): 493-508.
  • 加载中
图(8)
计量
  • 文章访问数:  573
  • HTML全文浏览量:  202
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-04
  • 录用日期:  2023-01-01
  • 修回日期:  2022-08-30
  • 网络出版日期:  2023-03-08
  • 刊出日期:  2023-03-15

目录

    /

    返回文章
    返回