留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Legendre配置谱方法求解Bose-Einstein凝聚态的基态解

刘文杰 王汉权

刘文杰, 王汉权. Legendre配置谱方法求解Bose-Einstein凝聚态的基态解[J]. 应用数学和力学, 2023, 44(6): 719-730. doi: 10.21656/1000-0887.430257
引用本文: 刘文杰, 王汉权. Legendre配置谱方法求解Bose-Einstein凝聚态的基态解[J]. 应用数学和力学, 2023, 44(6): 719-730. doi: 10.21656/1000-0887.430257
LIU Wenjie, WANG Hanquan. The Legendre Collocation Spectral Method for the Ground State Solutions of the Bose-Einstein Condensates[J]. Applied Mathematics and Mechanics, 2023, 44(6): 719-730. doi: 10.21656/1000-0887.430257
Citation: LIU Wenjie, WANG Hanquan. The Legendre Collocation Spectral Method for the Ground State Solutions of the Bose-Einstein Condensates[J]. Applied Mathematics and Mechanics, 2023, 44(6): 719-730. doi: 10.21656/1000-0887.430257

Legendre配置谱方法求解Bose-Einstein凝聚态的基态解

doi: 10.21656/1000-0887.430257
基金项目: 

国家自然科学基金项目 11871418

国家自然科学基金项目 11971120

云南基础研究计划重点项目 202101AS070044

云南省教育厅科研基金项目 2022Y547

详细信息
    作者简介:

    刘文杰(1996—),男,硕士生(E-mail: 1455696828@qq.com)

    通讯作者:

    王汉权(1974—),男,教授,博士(通讯作者. E-mail: hanquan.wang@gmail.com)

  • 中图分类号: O242

The Legendre Collocation Spectral Method for the Ground State Solutions of the Bose-Einstein Condensates

  • 摘要: 近年来, 有关Bose-Einstein凝聚态基态解的实验研究已经取得了一系列重要的成果. 该文在相关研究成果的基础上, 首先通过降维和无量纲化方法将Bose-Einstein凝聚态基态解问题转换成能量泛函极值问题, 在离散该泛函时, 尝试使用Legendre配置谱方法离散该能量泛函的一维和二维情形. 其次, 对该能量泛函极小值问题进行了数值模拟. 最后,通过分析实验数据结果和图像得出,针对非旋转的Bose-Einstein凝聚态的基态解问题可以使用Legendre配置谱方法来求解, 且数值结果的误差较小.
  • 图  1  一维(左图)、二维(右图)情况下, 改变N的大小, 误差ε的变化情况

    Figure  1.  Changes of error ε with N in the 1D case (left) and the 2D case (right)

    图  2  β=5, 10, 100, 1 000时, 一维Bose-Einstein凝聚态的基态解ϕg(x)

    Figure  2.  Ground state solution ϕg(x) of the 1D Bose-Einstein condensates for β=5, 10, 100, 1 000

    图  3  β=5, 10, 100, 1 000时的ϕg(x, y)

    Figure  3.  The ϕg(x, y) graphs for β=5, 10, 100, 1 000

    表  1  一维情况下, 改变N的大小, 误差ε的变化情况

    Table  1.   In the 1D case, changes of error ε with N

    N 10 20 30 40 50
    error ε 6.46E-1 1.79E-1 4.67E-2 1.10E-2 1.10E-3
    下载: 导出CSV

    表  2  二维情况下, 改变N的大小, 误差ε的变化情况

    Table  2.   In the 2D case, changes of error ε with N

    N 10 20 30 40 50
    error ε 3.65E-1 2.23E-2 5.38E-4 9.31E-7 1.22E-9
    下载: 导出CSV

    表  3  一维情况下Legendre配置谱方法的能量值Eβ(ϕg)和Fourier谱方法的能量值Eβ(ϕgFP)与β之间的变化情况

    Table  3.   Energy value Eβ(ϕg) of the Legendre collocation spectrum method and energy value Eβ(ϕgFP) of the Fourier spectrum method in the 1D case, changing with β

    β 0 5 10 100 1 000
    Eβ(ϕg) 0.499 9 1.316 0 1.947 2 8.508 5 39.322 4
    Eβ(ϕgFP) 0.500 0 1.316 1 1.947 1 8.508 5 39.322 4
    下载: 导出CSV

    表  4  二维情况下Legendre配置谱方法的能量值Eβ(ϕg)和Fourier谱方法的能量值Eβ(ϕgFP)与β之间的变化情况

    Table  4.   Energy value Eβ(ϕg) of the Legendre collocation spectrum method and energy value Eβ(ϕgFP) of the Fourier spectrum method in the 2D case, changing with β

    β 0 5 10 100 1 000
    Eβ(ϕg) 1 1.437 1 1.611 7 3.983 6 12.001
    Eβ(ϕgFP) 0.968 7 1.501 1 1.697 1 4.004 0 12.001
    下载: 导出CSV
  • [1] BAO W, WANG H, MARKOWICH P A. Ground, symmetric and central vortex states in rotating Bose-Einstein condensates[J]. Communications in Mathematical Sciences, 2005, 3(1): 57-88. doi: 10.4310/CMS.2005.v3.n1.a5
    [2] 冯悦. Bose-Einstein凝聚基态解的时空自适应方法[D]. 硕士学位论文. 杭州: 浙江大学, 2017.

    FENG Yue. A spatiotemporal adaptive method for Bose-Einstein condensed ground state solutions[D]. Master Thesis. Hangzhou: Zhejiang University, 2017. (in Chinese)
    [3] LIU H, DENG D, PANG P, et al. Numerical simulations on ground states for rotating two-component Bose-Einstein condensates[J]. Advances in Applied Mathematics, 2017, 6(9): 1187-1200. doi: 10.12677/AAM.2017.69144
    [4] 温建蓉, 李晋斌. 单组份玻色-爱因斯坦凝聚体基态稳定性研究[J]. 西安文理学院学报(自然科学版), 2018, 21(1): 11-15. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJY201801002.htm

    WEN Jianrong, LI Jinbin. Research on ground state stability of single-component Bose-Einstein condensate[J]. Journal of Xi'an University(Natural Science Edition), 2018, 21(1): 11-15. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAJY201801002.htm
    [5] GAIDAMOUR J, TANG Q, ANTOINE X. BEC2HPC: a HPC spectral solver for nonlinear Schrödinger and rotating Gross-Pitaevskii equations. Stationary states computation[J]. Computer Physics Communications, 2021, 265: 108007. doi: 10.1016/j.cpc.2021.108007
    [6] 王智军. 带杂质旋转玻色-爱因斯坦凝聚体基态的数值模拟[D]. 硕士学位论文. 长沙: 湖南师范大学, 2020.

    WANG Zhijun. Numerical simulation of the ground state of a Bose-Einstein condensate with impurities[D]. Master Thesis. Changsha: Hunan Normal University, 2020. (in Chinese)
    [7] XU F, HUANG Q, WANG M, et al. A novel adaptive finite element method for the ground state solution of Bose-Einstein condensates[J]. Applied Mathematics and Computation, 2020, 385: 125404. doi: 10.1016/j.amc.2020.125404
    [8] CHEN H, DONG G, LIU W, et al. Second-order flows for computing the ground states of rotating Bose-Einstein condensates[J]. Journal of Computational Physics, 2022, 475: 111872.
    [9] EDWARDS M, BURNETT K. Numerical solution of the nonlinear Schrödinger equation for small samples of trapped neutral atoms[J]. Physical Review A, 1995, 51(2): 1382. doi: 10.1103/PhysRevA.51.1382
    [10] BAO W, DU Q. Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow[J]. SIAM Journal on Scientific Computing, 2003, 25(5): 1674-1697.
    [11] BAO W, SHEN J. A fourth-order time-splitting Laguerre-Hermite pseudo-spectral method for Bose-Einstein condensates[J]. SIAM Journal on Scientific Computing, 2005, 26(6): 2010-2028. doi: 10.1137/030601211
    [12] BAO W, JAKSCH D, MARKOWICH P A. Numerical solution of the Gross-Pitaevskii equation for Bose-Einstein condensation[J]. Journal of Computational Physics, 2003, 187(1): 318-342. doi: 10.1016/S0021-9991(03)00102-5
    [13] 舒级, 张健. 一类拟线性Schrödinger方程[J]. 应用数学和力学, 2007, 28(7): 877-882. doi: 10.3321/j.issn:1000-0887.2007.07.015

    SHU Ji, ZHANG Jian. On a class of quasilinear Schrödinger equations[J]. Applied Mathematics and Mechanics, 2007, 28(7): 877-882. (in Chinese) doi: 10.3321/j.issn:1000-0887.2007.07.015
    [14] CALIARI M, RAINER S. GSGPEs: a MATLAB code for computing the ground state of systems of Gross-Pitaevskii equations[J]. Computer Physics Communications, 2013, 184(3): 812-823. doi: 10.1016/j.cpc.2012.10.007
    [15] 华冬英, 邱镜亮. 玻色-爱因斯坦凝聚基态解的有限元数值计算[J]. 北京信息科技大学学报, 2011, 26(6): 21-25. doi: 10.3969/j.issn.1674-6864.2011.06.005

    HUA Dongying, QIU Jingliang. Computing the ground state solution of Bose-Einstein condensations by finite element method[J]. Journal of Beijing Information Science & Technology University, 2011, 26(6): 21-25. (in Chinese) doi: 10.3969/j.issn.1674-6864.2011.06.005
    [16] WU X, WEN Z, BAO W. A regularized Newton method for computing ground states of Bose-Einstein condensates[J]. Journal of Scientific Computing, 2017, 73: 303-329. doi: 10.1007/s10915-017-0412-0
    [17] 杨娜, 陈龙伟, 熊梅. 广义带导数的非线性Schrödinger方程的动态分析和精确解[J]. 应用数学和力学, 2018, 39(10): 1198-1205. doi: 10.21656/1000-0887.380302

    YANG Na, CHEN Longwei, XIONG Mei. Dynamic analysis and exact solution of the general nonlinear Schrödinger equation with derivative[J]. Applied Mathematics and Mechanics, 2018, 39(10): 1198-1205. (in Chinese) doi: 10.21656/1000-0887.380302
    [18] 代猛, 尹小艳. 立方Schrödinger方程的半隐格式BDF2-FEM无条件最优误差估计[J]. 应用数学和力学, 2019, 40(6): 663-681. doi: 10.21656/1000-0887.390209

    DAI Meng, YIN Xiaoyan. Unconditionally optimal error estimates of the semi-implicit BDF2-FEM for cubic Schrödinger equations[J]. Applied Mathematics and Mechanics, 2019, 40(6): 663-681. (in Chinese) doi: 10.21656/1000-0887.390209
    [19] 曹蕊, 华冬英, 王茜, 等. Bose-Einstein凝聚问题基态解的数值方法比较和分析[J]. 北京信息科技大学学报, 2021, 36(6): 6-13. https://www.cnki.com.cn/Article/CJFDTOTAL-BJGY202106002.htm

    CAO Rui, HUA Dongying, WANG Xi, et al. Comparison and analysis of numerical methods for ground state solution of Bose-Einstein condensation[J]. Journal of Beijing Information Science & Technology University, 2021, 36(6): 6-13. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJGY202106002.htm
    [20] NOCEDAL J, WRIGHT S J. Numerical Optimization[M]. 2nd ed. New York: Springer, 2006.
    [21] SHEN J, TANG T, WANG L L. Spectral Methods[M]. Berlin: Springer, 2011.
    [22] ANGLIN J R, KETTERLE W. Bose-Einstein condensation of atomic gases[J]. Nature, 2002, 436: 211-218.
    [23] DALFOVO F, GIORGINI S, PITAEVSKⅡ L P, et al. Theory of Bose-Einstein condensation in trapped gases[J]. Review of Modern Physics, 1998, 71(3): 463-512.
    [24] PETHICK C J. Bose-Einstein Condensation in Dilute Gases[M]. Cambridge: Cambridge University Press, 2008.
    [25] PITAEVSKⅡ L, STRINGARI S. Bose-Einstein condensation[J]. Physical Review Letters, 2009, 103(20): 200402. doi: 10.1103/PhysRevLett.103.200402
    [26] BAO W, TANG W. Ground state solution of Bose-Einstein condensate by directly minimizing the energy functional[J]. Journal of Computational Physics, 2003, 187(1): 230-254. doi: 10.1016/S0021-9991(03)00097-4
    [27] BAO W, CAI Y. Mathematical theory and numerical methods for Bose-Einstein condensation[J]. Kinetic and Related Models, 2013, 6(1): 1-135. doi: 10.3934/krm.2013.6.1
    [28] LIEB E H, SEIRINGER R, YNGVASON J. Bosons in a trap: a rigorous derivation of the Gross-Pitaevskii energy functional[J]. Physical Review A, 2000, 61(4): 043602. doi: 10.1103/PhysRevA.61.043602
    [29] PETHICK C J, SMITH H. Bose-Einstein Condensation in Dilute Gases: Theory of the Condensed State[M]. Cambridge: Cambridge University Press, 2001.
    [30] CANCōS E, CHAKIR R, MADAY Y. Numerical analysis of nonlinear eigenvalue problems[J]. Journal of Scientific Computing, 2009, 45(1): 1-24.
    [31] AN J, SHEN J, ZHANG Z. The spectral-Galerkin approximation of nonlinear eigenvalue problems[J]. Applied Numerical Mathematics: Transactions of IMACS, 2018, 131: 1-15.
  • 加载中
图(3) / 表(4)
计量
  • 文章访问数:  323
  • HTML全文浏览量:  126
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-10
  • 修回日期:  2023-05-18
  • 刊出日期:  2023-06-01

目录

    /

    返回文章
    返回