Symplectic Analysis on the Bending Problem of Decagonal Symmetric 2D Quasicrystal Plates With 2 Opposite Edges Simply Supported
-
摘要: 该文讨论了对边简支十次对称二维准晶中厚板弹性问题的辛方法. 将十次对称二维准晶弹性理论基本方程转化为Hamilton对偶方程,采用分离变量方法,获得了相应Hamilton算子矩阵的辛特征值及辛特征函数系. 证明了Hamilton算子矩阵的辛特征函数系在Cauchy主值意义下的完备性,在此基础上,基于Hamilton系统的辛特征函数展开,给出了十次对称二维准晶板弯曲问题的解析表达式.
-
关键词:
- 十次对称二维准晶 /
- 辛方法 /
- Hamilton正则方程 /
- 完备性
Abstract: The symplectic method for the elastic problem of decagonal symmetric 2D quasicrystal plates with 2 opposite edges simply supported, was discussed. The basic equations of the elastic theory for decagonal symmetric 2D quasicrystals were transformed into the Hamilton dual equations. With the method of separation of variables, the symplectic eigenvalues of the corresponding Hamilton operator matrix and the symplectic eigenfunction system were obtained. The completeness of the symplectic eigenfunction system of the Hamilton operator matrix in the sense of the Cauchy principal value was proved. Based on the symplectic eigenfunction expansion of the Hamilton system, the analytical solution to the bending problem of the decagonal symmetric 2D quasicrystal plate was given. -
表 1 不同宽度和厚度比下中点处的挠度
Table 1. Deflections at the midpoint under different width-to-thickness ratios
b/a h/a n uz(qa4K1/η2) 1.0 0.2 5 0.004 846 34 15 0.004 842 8 25 0.004 843 01 35 0.004 842 96 45 0.004 842 98 55 0.004 842 97 65 0.004 842 97 1.5 0.2 5 0.008 795 16 15 0.008 791 62 25 0.008 791 83 35 0.008 791 78 45 0.008 791 8 55 0.008 791 79 65 0.008 791 79 2.0 0.2 5 0.011 338 6 15 0.011 335 1 25 0.011 335 3 35 0.011 335 2 45 0.011 335 3 55 0.011 335 2 65 0.011 335 2 -
[1] SHECHTMAN D, BLECH I, GRATIAS D, et al. Metallic phase with long-range orientational order and no translational symmetry[J]. Physical Review Letters, 1984, 53(20): 1951-1953. doi: 10.1103/PhysRevLett.53.1951 [2] DUBOIS J M. Useful Quasicrystals[M]. Singapore: World Scientific Publishing, 2005. [3] FAN T Y. Mathematical Theory of Elasticity of Quasicrystals and Its Applications[M]. Berlin: Springer, 2011. [4] RICKER M, BACHTELER J, TREBIN H R. Elastic theory of icosahedral quasicrystals application to straight dislocations[J]. The European Physical Journal B: Condensed Matter and Complex Systems, 2001, 23(3): 351-363. doi: 10.1007/s100510170055 [5] DE P, PELCOVITS R A. Linear elasticity theory of pentagonal quasicrystals[J]. Physical Review B, 1987, 35(13): 8609-8620. [6] YASLAN H C. Equations of anisotropic elastodynamics in 3D quasicrystals as a symmetric hyperbolic system: deriving the time-dependent fundamental solutions[J]. Applied Mathematical Modelling, 2013, 37(18/19): 8409-8418. [7] GAO Y, ZHAO Y T, ZHAO B S. Boundary value problems of holomorphic vector functions in 1D QCs[J]. Physica B: Condensed Matter, 2007, 394(1): 56-61. doi: 10.1016/j.physb.2007.02.007 [8] ZHAO X F, LI X, DING S H. Two kinds of contact problems in dodecagonal quasicrystals of point group 12 mm[J]. Acta Mechanica Solida Sinica, 2016, 29(2): 167-177. doi: 10.1016/S0894-9166(16)30105-7 [9] GUO J H, YU J, SI R. A semi-inverse method of a Griffith crack in one-dimensional hexagonal quasicrystals[J]. Applied Mathematics and Computation, 2013, 219(14): 7445-7449. doi: 10.1016/j.amc.2013.01.031 [10] LI X Y. Elastic field in an infinite medium of one-dimensional hexagonal quasicrystal with a planar crack[J]. International Journal of Solids and Structures, 2014, 51(6): 1442-1455. doi: 10.1016/j.ijsolstr.2013.12.030 [11] RADI E, MARIANO P M. Stationary straight cracks in quasicrystals[J]. International Journal of Fracture, 2010, 166(1/2): 105-120. [12] 钟万勰. 弹性力学求解新体系[M]. 大连: 大连理工大学出版社, 1995.ZHONG Wanxie. A New Systematic Methodology for Theory of Elasticity[M]. Dalian: Dalian University of Technology Press, 1995. (in Chinese) [13] ALATANCANG, WU D Y. Completeness in the sense of Cauchy principal value of the eigenfunction systems of infinite dimensional Hamiltonian operator[J]. Science in China(Series A): Mathematics, 2009, 52(1): 173-180. [14] ALATANCANG, HOU G L, HAI G J. Perturbation ofspectra for a class of 2×2 operator matrices[J]. Acta Mathematicae Applicatae Sinica(English Series), 2012, 28(4): 711-720. doi: 10.1007/s10255-012-0195-x [15] 李锐, 田宇, 郑新然, 等. 求解弹性地基上自由矩形中厚板弯曲问题的辛-叠加方法[J]. 应用数学和力学, 2018, 39(8): 875-891. doi: 10.21656/1000-0887.390186LI Rui, TIAN Yu, ZHENG Xinran, et al. A symplectic superposition method for bending problems of free-edge rectangular thick plates resting on elastic foundations[J]. Applied Mathematics and Mechanics, 2018, 39(8): 875-891. (in Chinese) doi: 10.21656/1000-0887.390186 [16] QIAO Y, HOU G, CHEN A. A complete symplectic approach for a class of partial differential equations arising from the elasticity[J]. Applied Mathematical Modelling, 2021, 89(2): 1124-1139. [17] 额布日力吐, 冯璐, 阿拉坦仓. 四边固支正交各向异性矩形薄板弯曲问题的辛叠加方法[J]. 应用数学和力学, 2018, 39(3): 311-323. doi: 10.21656/1000-0887.380092EBURILITU, FENG Lu, ALATANCANG. Analytical bending solutions of clamped orthotropic rectangular thin plates with the symplectic superposition method[J]. Applied Mathematics and Mechanics, 2018, 39(3): 311-323. (in Chinese) doi: 10.21656/1000-0887.380092 [18] 张俊霖, 倪一文, 李庆东, 等. 吸湿老化影响下天然纤维增强复合圆柱壳屈曲分析的辛方法[J]. 应用数学和力学, 2021, 42(12): 1238-1247. doi: 10.21656/1000-0887.420018ZHANG Junlin, NI Yiwen, LI Qingdong, et al. A symplectic approach for buckling analysis of natural fiber reinforced composite shells under hygrothermal aging[J]. Applied Mathematics and Mechanics, 2021, 42(12): 1238-1247. (in Chinese) doi: 10.21656/1000-0887.420018 [19] ZHANG W X, XU X S. The symplectic approach for two-dimensional thermo-viscoelastic analysis[J]. International Journal of Engineering Science, 2012, 50(1): 56-69. doi: 10.1016/j.ijengsci.2011.09.003 [20] LI X, YAO W A, HU X F, et al. Interfacial crack analysis between dissimilar viscoelastic media using symplectic analytical singular element[J]. Engineering Fracture Mechanics, 2019, 219: 106628. doi: 10.1016/j.engfracmech.2019.106628 [21] XU X S, RONG D L, LIM C W, et al. An analytical symplectic approach to the vibration analysis of orthotropic graphene sheets[J]. Acta Mechanica Sinica, 2017, 33(5): 912-925. doi: 10.1007/s10409-017-0656-9 [22] FAN J H, RONG D L, ZHOU Z H, et al. Exact solutions for forced vibration of completely free orthotropic rectangular nanoplates resting on viscoelastic foundation[J]. European Journal of Mechanics A: Solids, 2019, 73: 22-33. doi: 10.1016/j.euromechsol.2018.06.007 [23] ZHOU Z H, YU X, YANG Z T, et al. An isogeometric-symplectic coupling approach for fracture analysis of magnetoelectroelastic bimaterials with crack terminating at the interface[J]. Engineering Fracture Mechanics, 2019, 216: 106510. doi: 10.1016/j.engfracmech.2019.106510 [24] ZHOU Z H, NI Y W, ZHU S B, et al. An accurate and straightforward approach to thermo-electro-mechanical vibration of piezoelectric fiber-reinforced composite cylindrical shells[J]. Composite Structures, 2019, 207: 292-303. doi: 10.1016/j.compstruct.2018.08.076 [25] FAN J J, LI L H, CHEN A. Symplectic method for the thin piezoelectric plates[J]. Crystals, 2022, 12(5): 681. doi: 10.3390/cryst12050681 [26] ZHANG K, GE M H, ZHAO C, et al. Free vibration of nonlocal Timoshenko beams made of functionally graded materials by symplectic method[J]. Composites(Part B): Engineering, 2019, 156: 174-184. doi: 10.1016/j.compositesb.2018.08.051 [27] ZHANG K, DENG Z C, XU X J, et al. Symplectic analysis for wave propagation of hierarchical honeycomb structures[J]. Acta Mechanica Solida Sinica, 2015, 28(3): 294-304. doi: 10.1016/S0894-9166(15)30016-1 [28] ZHOU Z H, YANG Z T, XU W, et al. Evaluation ofelectroelastic singularity of finite-size V-notched one-dimensional hexagonal quasicrystalline bimaterials with piezoelectric effect[J]. Theoretical and Applied Fracture Mechanics, 2019, 100: 139-153. [29] YANG Z T, YU X, XU C H, et al. A novel Hamiltonian-based isogeometric analysis of one-dimensional hexagonal piezoelectric quasicrystal with mode Ⅲ electrically permeable/impermeable cracks[J]. Theoretical and Applied Fracture Mechanics, 2020, 107: 102552. doi: 10.1016/j.tafmec.2020.102552 [30] WANG H, LI L H, HUANG J J, et al. Symplectic approach for the plane elasticity problem of quasicrystals with point group 10 mm[J]. Applied Mathematical Modelling, 2015, 39(12): 3306-3316. [31] WANG H, CHEN J R, ZHANG X Y, et al. On symplectic analysis for the plane elasticity problem of quasicrystals with point group 12 mm[J]. Abstract and Applied Analysis, 2014, 2014: 367018. [32] QIAO Y, HOU G, CHEN A. Symplectic approach for plane elasticity problems of two dimensional octagonal quasicrystals[J]. Applied Mathematics and Computation, 2021, 400: 126043. [33] LI L H, LIU G T. Decagonal quasicrystal plate with elliptic holes subjected to out-of-plane bending moments[J]. Physics Letters A, 2014, 378(10): 839-844. [34] HOU G L, QI G W, XU Y N, et al. The separable Hamiltonian system and complete biorthogonal expansion method of Mindlin plate bending problems[J]. Science China: Physics, Mechanics & Astronomy, 2013, 56(1): 974-980.