[1] |
HEMATI N, LEU M C. A complete model characterization of brushless DC motors[J]. IEEE Transactions on Industry Application, 1992, 28(1): 172-180. doi: 10.1109/28.120227
|
[2] |
HEMATI N. Strange attractors in brushless DC motor[J]. IEEE Transactions on Circuits and Systems , 1994, 41(1): 40-45.
|
[3] |
LI Z, PARK J B, ZHU Y, et al. Bifurcations and chaos in a permanent-magnet synchronous motor[J]. IEEE Transactions on Circuits and systems , 2002, 49(3): 383-387. doi: 10.1109/81.989176
|
[4] |
LI Z, ZHANG B, MAO Z, et al. Bifurcation analysis of the permanent-magnet synchronous motors models based on the center manifold theorem[J]. Control Theory and Application, 2000, 17(3): 317-320.
|
[5] |
唐传胜, 戴跃洪. 参数不确定永磁同步电动机混沌系统的有限时间稳定控制[J]. 物理学报, 2013, 62(18): 68-73. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201318009.htmTANG Chuansheng, DAI Yuehong. Finite-time stability control of permanent magnet synchronous motor chaotic system with parameters uncertain[J]. Acta Physica Sinica, 2013, 62(18): 68-73. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201318009.htm
|
[6] |
王碧轩. 永磁同步电机的非线性动力学特征研究及其混沌控制[D]. 硕士学位论文. 兰州: 兰州交通大学, 2015.WANG Bixuan. Nonlinear dynamics and chaos control of the permanent-magnet synchronous motor[D]. Master Thesis. Lanzhou: Lanzhou Jiaotong University, 2015. (in Chinese)
|
[7] |
RAO X, CHU Y, CHANG Y, et al. Dynamics of a cracked rotor system with oil-film force in parameter space[J]. Nonlinear Dynamics, 2017, 88: 2347-2357. doi: 10.1007/s11071-017-3381-9
|
[8] |
RAO X, CHU Y, CHANG Y, et al. Broken Farey tree and fractal in a hexagonal centrifugal governor with a spring[J]. Chaos, Solit and Fractals, 2018, 107: 251-255. doi: 10.1016/j.chaos.2018.01.015
|
[9] |
MA C, WANG L, YIN Z, et al. Sliding mode control of chaos in the noise-perturbed Permanent magnet synchronous motor with non-smooth air-gap[J]. International Journal of Mining Science and Technology, 2011, 21(6): 835-838.
|
[10] |
杨黎晖, 葛扬, 马西奎. 永磁同步风力发电机随机分岔现象的全局分析[J]. 物理学报, 2017, 66(19): 8-18. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201719001.htmYANG Lihui, GE Yang, MA Xikui. Global analysis of stochastic bifurcation in permanent magnet synchronous generator for wind turbine system[J]. Acta Physica Sinica, 2017, 66(19): 8-18. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201719001.htm
|
[11] |
XU P, JIN Y. Stochastic resonance in multi-stable coupled systems driven by two driving signals[J]. Physica A: Statistical Mechanics and Its Applications, 2018, 492: 1281-1289. doi: 10.1016/j.physa.2017.11.056
|
[12] |
HE M, WEI X, SUN Z, et al. Characterization of stochastic resonance in a bistable system with Poisson white noise using statistical complexity measures[J]. Communications in Nonlinear Science & Numerical Simulation, 2015, 28(1/3): 39-49.
|
[13] |
JIAO S, JIANG W, LEI S, et al. Research on detection method of multi-frequency weak signal based on stochastic resonance and chaos characteristics of Duffing system[J]. Chinese Journal of Physics, 2020, 64: 333-347. doi: 10.1016/j.cjph.2019.12.001
|
[14] |
陈乾君, 蒋媛, 刘子建, 等. 具有Gilpin-Ayala增长的随机捕食-食饵模型的动力学行为[J]. 应用数学和力学, 2022, 43(4): 453-468. doi: 10.21656/1000-0887.420203CHEN Qianjun, JIANG Yuan, LIU Zijian, et al. Dynamic behavior of a stochastic predator prey model with the Gilpin-Ayala growth[J]. Applied Mathematics and Mechanics, 2022, 43(4): 453-468. (in Chinese) doi: 10.21656/1000-0887.420203
|
[15] |
曹晓春, 荆文君, 靳祯. 基于白噪声的网络传染病模型动力学分析[J]. 应用数学和力, 2022, 43(6): 690-699. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSX202206010.htmCAO Xiaochun, JING Wenjun, JIN Zhen. Dynamic analysis of the network epidemic model based on white noise[J]. Applied Mathematics and Mechanics, 2022, 43(6): 690-699. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YYSX202206010.htm
|
[16] |
ZHANG J, CHU Y. The invariant measure and stationary probability density computing model based analysis of the governor system[J]. Cluster Computing, 2017, 20(2): 1437-1447.
|
[17] |
ZHANG J, LIANG X, QIAO S, et al. Stochastic stability and bifurcation of centrifugal governor system subject to color noise[J]. International Journal of Bifurcation and Chaos, 2021, 32(5): 2250061.
|
[18] |
张美娇, 张建刚, 南梦冉, 等. 色噪声激励下水轮机调节系统的分岔[J]. 山东大学学报(理学版), 2021, 56(12): 94-99. https://www.cnki.com.cn/Article/CJFDTOTAL-SDDX202112014.htmZHANG Meijiao, ZHANG Jiangang, NAN Mengran, et al. Bifurcation of hydraulic turbine governing system under color noise excitation[J]. Journal of Shandong University (Science Edition), 2021, 56(12): 94-99. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SDDX202112014.htm
|
[19] |
张祥云, 吴志强. 噪声激励下水平扫视眼动系统的随机分岔[J]. 应用数学和力学, 2017, 38(1): 126-132. doi: 10.21656/1000-0887.370513ZHANG Xiangyun, WU Zhiqiang. Stochastic bifurcation in the saccadic system driven by noise[J]. Applied Mathematics and Mechanics, 2017, 38(1): 126-132. (in Chinese) doi: 10.21656/1000-0887.370513
|
[20] |
宋志环. 永磁同步电动机电磁振动噪声源识别技术的研究[D]. 博士学位论文. 沈阳: 沈阳工业大学, 2010.SONG Zhihuan. Research on recognition of electromagnetic noise and vibration of the permanent magnet synchronous machine[D]. PhD Thesis. Shenyang: Shenyang University of Technology, 2010. (in Chinese)
|
[21] |
白宝丽, 张建刚, 杜文举, 等. 一类随机的SIR流行病模型的动力学分析[J]. 山东大学学报(理学版), 2017, 56(4): 72-82. https://www.cnki.com.cn/Article/CJFDTOTAL-SDDX201704013.htmBAI Baoli, ZHANG Jiangang, DU Wenju, et al. Dynamic behavior analysis of a stochastic SIR epidemic model[J]. Journal of Shandong University (Science Edition), 2017, 56(4): 72-82. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SDDX201704013.htm
|
[22] |
顾凤蛟, 高燕, 任丽佳, 等. 基于Lévy噪声的混合时滞中立型神经网络自适应同步研究[J]. 应用数学和力学, 2020, 41(11): 1259-1274. doi: 10.21656/1000-0887.400350GU Fengjiao, GAO Yan, REN Lijia, et al. Adaptive synchronization of neutral networks with mixed delays and Lévy noises[J]. Applied Mathematics and Mechanics, 2020, 41(11): 1259-1274. (in Chinese) doi: 10.21656/1000-0887.400350
|
[23] |
WOLF A, SWIFT J B, SWINNEY H L, et al. Determining Lyapunov exponents from a time series[J]. Physica D: Nonlinear Phenomena, 1985, 16(3): 285-317.
|