留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

刚性截面族附加质量系数的面元计算方法及其在燃料组件中的应用

王麒均 张德春 李鹏 王骏

王麒均,张德春,李鹏,王骏. 刚性截面族附加质量系数的面元计算方法及其在燃料组件中的应用 [J]. 应用数学和力学,2023,44(2):133-140 doi: 10.21656/1000-0887.430292
引用本文: 王麒均,张德春,李鹏,王骏. 刚性截面族附加质量系数的面元计算方法及其在燃料组件中的应用 [J]. 应用数学和力学,2023,44(2):133-140 doi: 10.21656/1000-0887.430292
WANG Qijun, ZHANG Dechun, LI Peng, WANG Jun. The Panel Method for Rigid Section Group Added Mass Coefficients and Its Application to Fuel Assemblies[J]. Applied Mathematics and Mechanics, 2023, 44(2): 133-140. doi: 10.21656/1000-0887.430292
Citation: WANG Qijun, ZHANG Dechun, LI Peng, WANG Jun. The Panel Method for Rigid Section Group Added Mass Coefficients and Its Application to Fuel Assemblies[J]. Applied Mathematics and Mechanics, 2023, 44(2): 133-140. doi: 10.21656/1000-0887.430292

刚性截面族附加质量系数的面元计算方法及其在燃料组件中的应用

doi: 10.21656/1000-0887.430292
基金项目: 国家自然科学基金(12072298;12172311)
详细信息
    作者简介:

    王麒均(1998—),男,硕士生(E-mail:1344932081@qq.com

    李鹏(1983—),男,教授,博士生导师(通讯作者. E-mail:lp_vib@126.com

  • 中图分类号: O35

The Panel Method for Rigid Section Group Added Mass Coefficients and Its Application to Fuel Assemblies

  • 摘要:

    基于面元法发展了适用于计算具有任意复杂外形的刚性截面族附加流体质量系数的数值方法,并将其应用到压水堆燃料组件的计算中,分析了1 × 5组件抗震试验中由组件位置偏差所引起的附加质量系数变化规律。结果表明:该方法能解决具有复杂连续边界的刚性截面族附加质量系数计算问题;相较于组件间间隙,围板与组件间隙对质量系数的影响占主导;无论存在何种位置偏差,任意一组件在所有组件和围板上产生的沿假设运动方向与垂直假设运动方向上的附加质量系数之和分别近似为−1和0。

  • 图  1  二维模型示意图:(a)容器截面图; (b)面元法离散图;(c)相对坐标图

    注 为了解释图中的颜色,读者可以参考本文的电子网页版本,后同。

    Figure  1.  Schematic diagram of the 2D model: (a) the sectional view of the container; (b) the discrete graph of the panel element method; (c) the relative coordinate graph

    图  2  封闭圆形容器内的一组圆形截面

    Figure  2.  A group of circular sections inside a closed circular container

    图  3  网格无关性分析结果

    Figure  3.  Grid-independent analysis results

    图  4  结果对比图

    Figure  4.  The result comparison graph

    图  5  单根燃料组件示意图:(a)单根燃料组件模型;(b) ANSYS流场网格

    Figure  5.  Schematic diagram of a single fuel assembly: (a) the single fuel assembly model; (b) the ANSYS flow field mesh

    图  6  本文结果与ANSYS结果对比图

    Figure  6.  The comparison between the results of this method and the ANSYS results

    图  7  简化压水堆燃料组件

    Figure  7.  Simplified PWR fuel assemblies

    图  8  1号组件存在水平方向位置偏差

    Figure  8.  No. 1 with horizontal position deviation

    图  9  1号组件存在竖直方向位置偏差

    Figure  9.  No. 1 with vertical position deviation

    图  10  2号组件存在水平方向位置偏差

    Figure  10.  No. 2 with horizontal position deviation

    图  11  2号组件存在竖直方向位置偏差

    Figure  11.  No. 2 with vertical position deviation

    图  12  3号组件存在水平方向位置偏差

    Figure  12.  No. 3 with horizontal position deviation

    图  13  3号组件存在竖直方向位置偏差

    Figure  13.  No. 3 with vertical position deviation

    图  14  对称形位置偏转

    Figure  14.  Symmetrical position deflections

    图  15  反对称形位置偏转

    Figure  15.  Antisymmetrical position deflections

    表  1  截面质量系数之和

    Table  1.   Sums of mass coefficients of sections

    p$\displaystyle \sum\limits_q {m_{pq}^x }$$\displaystyle \sum\limits_q {m_{pq}^y }$
    346346
    ref. [6]−0.9998−0.9997−0.9997−0.000100
    present−1.0001−1.0001−1.0001000
    下载: 导出CSV

    表  2  组件质量系数之和

    Table  2.   Sums of mass coefficients of assemblies

    p$\displaystyle \sum\limits_q {m_{pq}^x}$$\displaystyle \sum\limits_q {m_{pq}^y}$
    123123
    normal condition−0.9674−0.9356−0.9314000
    fig.14 condition−0.9486−0.9144−0.9103−0.01900.0472−0.0083
    fig.15 condition−0.9477−0.9150−0.91010.0255−0.0080−0.0480
    下载: 导出CSV
  • [1] 张娟花. 先进核反应堆板状燃料组件流固耦合数值模拟软件的开发[D]. 硕士学位论文. 北京: 华北电力大学, 2008.

    ZHANG Juanhua. Development of fluid structure coupling numerical simulation software for advanced nuclear reactor plate fuel assembly[D]. Master Thesis. Beijing: North China Electric Power University, 2008. (in Chinese)
    [2] 岳欠杯, 刘巨保, 罗敏, 等. 圆筒流体域内管束振动与碰撞接触的流固耦合动力学方法研究[J]. 应用数学和力学, 2018, 39(5): 568-583

    YUE Qianbei, LIU Jubao, LUO Min, et al. A method of fluid-solid coupling dynamics for tube bundle vibration and collision in a cylinder fluid domain[J]. Applied Mathematics and Mechanics, 2018, 39(5): 568-583.(in Chinese)
    [3] RICCIARDI G, BELLIZZI S, COLLARD B, et al. Row of fuel assemblies analysis under seismic loading: modelling and experimental validation[J]. Nuclear Engineering and Design, 2009, 239(12): 2692-2704. doi: 10.1016/j.nucengdes.2009.08.029
    [4] MAZUR V Y. Motion of a circular cylinder near a vertical wall[J]. Fluid Dynamics, 1966, 1(3): 49-51. doi: 10.1007/BF01106871
    [5] MAZUR V Y. Motion of two circular cylinders in an ideal fluid[J]. Fluid Dynamics, 1970, 5(6): 969-972.
    [6] CHUNG H, CHEN S S. Vibration of a group of circular cylinders in a confined fluid[J]. Journal of Applied Mechanics, 1977, 44(2): 213-217. doi: 10.1115/1.3424026
    [7] LAGRANGE R, DELAUNE X, PITEAU P, et al. A new analytical approach for modeling the added mass and hydrodynamic interaction of two cylinders subjected to large motions in a potential stagnant fluid[J]. Journal of Fluids and Structures, 2018, 77: 102-114. doi: 10.1016/j.jfluidstructs.2017.12.002
    [8] RIGAUDEAU J, BROCHARD D, BENJEDIDIA A. Fluid structure interaction in the response of PWR fuel assemblies to horizontal seismic loads[C]//SMiRT 12 Conference. Stuttgart, Germany, 1993.
    [9] PAIDOUSSIS M P, SUSS S, PUSTEJOVSKY M. Free vibration of clusters of cylinders in liquid-filled channels[J]. Journal of Sound and Vibration, 1977, 55(3): 443-459. doi: 10.1016/S0022-460X(77)80025-4
    [10] 赵燮霖, 冯志鹏, 蔡逢春, 等. CFD-半解析模型混合的管束结构流弹失稳预测方法[J]. 应用数学和力学, 2021, 42(3): 248-255

    ZHAO Xielin, FENG Zhipeng, CAI Fengchun, et al. A hybrid CFD and semi-analytical approach to predict cross-flow-induced fluidelastic instability of tube arrays[J]. Applied Mathematics and Mechanics, 2021, 42(3): 248-255.(in Chinese)
    [11] LI W, LU D, LIU Y. Numerical investigation on the fluid added mass of spent fuel storage rack[J]. Nuclear Engineering and Design, 2018, 339: 83-91. doi: 10.1016/j.nucengdes.2018.08.025
    [12] TENG X, LIU J H, WANG H K, et al. Added mass coefficient of elastic rods in cylindrical fluid[J]. Nuclear Engineering and Design, 2019, 342: 249-256. doi: 10.1016/j.nucengdes.2018.12.010
    [13] ANDERSON J. Fundamentals of Aerodynamic[M]. 5th ed. New York: McGraw-Hill Education, 2010: 282-285.
    [14] KATZ J, PLOTKIN A. Low-Speed Aerodynamics[M]. 2nd ed. Cambridge: Cambridge University Press, 2001: 233-235.
    [15] 张鸣远. 流体力学[M]. 北京: 高等教育出版社, 2010: 107-128.

    ZHANG Mingyuan. Fluid Mechanics[M]. Beijing: Higher Education Press, 2010: 107-128. (in Chinese)
    [16] 刘建, 张毅雄, 冯志鹏, 等. 正三角形排列管束结构流弹失稳流体力模型数值研究[J]. 应用数学和力学, 2020, 41(5): 499-508

    LIU Jian, ZHANG Yixiong, FENG Zhipeng, et al. Numerical study of fluid elastic instability fluid force model for normal-triangle tube arrays[J]. Applied Mathematics and Mechanics, 2020, 41(5): 499-508.(in Chinese)
    [17] ZHANG D C, LI P, WANG Q J, et al. A note on added mass of a group of sections in confined fluid: a general conclusion[J]. Archive of Applied Mechanics, 2021, 91(11): 4433-4439. doi: 10.1007/s00419-021-02050-9
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  620
  • HTML全文浏览量:  261
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-23
  • 修回日期:  2022-11-04
  • 网络出版日期:  2023-02-21
  • 刊出日期:  2023-02-15

目录

    /

    返回文章
    返回