留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

杂质气体O2对ZrCo合金吸附性能影响机理的第一性原理研究

赵世祥 曾祥国 王云天 严义刚

赵世祥,曾祥国,王云天,严义刚. 杂质气体O2对ZrCo合金吸附性能影响机理的第一性原理研究 [J]. 应用数学和力学,2023,44(2):152-159 doi: 10.21656/1000-0887.430299
引用本文: 赵世祥,曾祥国,王云天,严义刚. 杂质气体O2对ZrCo合金吸附性能影响机理的第一性原理研究 [J]. 应用数学和力学,2023,44(2):152-159 doi: 10.21656/1000-0887.430299
ZHAO Shixiang, ZENG Xiangguo, WANG Yuntian, YAN Yigang. First Principle Study on the Influence Mechanism of Impurity Gas O2 on the Adsorption Properties of Alloy ZrCo[J]. Applied Mathematics and Mechanics, 2023, 44(2): 152-159. doi: 10.21656/1000-0887.430299
Citation: ZHAO Shixiang, ZENG Xiangguo, WANG Yuntian, YAN Yigang. First Principle Study on the Influence Mechanism of Impurity Gas O2 on the Adsorption Properties of Alloy ZrCo[J]. Applied Mathematics and Mechanics, 2023, 44(2): 152-159. doi: 10.21656/1000-0887.430299

杂质气体O2对ZrCo合金吸附性能影响机理的第一性原理研究

doi: 10.21656/1000-0887.430299
基金项目: 国家自然科学基金委员会-中国工程物理研究院联合重点基金(U2130208)
详细信息
    作者简介:

    赵世祥(1998—),男,硕士生(E-mail:2535923915@qq.com

    曾祥国(1960—),男,教授,博士(通讯作者. E-mail:xiangguozeng@scu.edu.cn

  • 中图分类号: TG139

First Principle Study on the Influence Mechanism of Impurity Gas O2 on the Adsorption Properties of Alloy ZrCo

  • 摘要:

    杂质气体在ZrCo合金表面的吸附行为对其储氢性能具有重要的影响。采用基于赝势平面波法的第一性原理对空气中的O2在ZrCo(110)表面的吸附行为进行了研究。对O2在合金表面所有稳定吸附构型进行吸附能分析以及电荷分析的结果表明:O2吸附的最稳定构型为B3(Zr—Co桥位),在该位点的吸附能为−8.124 eV。该构型的态密度和差分电荷密度的结果表明:O2在ZrCo(110)表面该位点的吸附属于强化学吸附,O—O键发生断裂。O原子与ZrCo(110)表面原子的成键本质为O原子的电子和周围表面原子的电子发生电子轨道重叠,即O原子的2s、2p轨道电子与表面的Zr原子的4p、4d轨道电子和Co原子的3d轨道电子发生了电子轨道重叠,出现了轨道杂化现象。研究结果对后续揭示ZrCo合金储氢材料在杂质气体中的毒化机制具有积极作用。

  • 图  1  ZrCo晶胞及表面模型

    注 为了解释图中的颜色,读者可以参考本文的电子网页版本,后同。

    Figure  1.  The unit cell structure of ZrCo and the ZrCo(110) surface model

    图  2  O2的所有初始吸附构型

    Figure  2.  All the initial configurations of O2 adsorption on the ZrCo(110) surface: top view

    图  3  优化后O2的稳定吸附构型

    Figure  3.  The optimized stable adsorption of O2 on the ZrCo(110) surface

    图  4  O2在ZrCo(110) B3和T1吸附位置的态密度

    Figure  4.  The density of states of the ZrCo(110) surface after adsorption of O2 at B3 and T1

    图  5  O2在ZrCo(110) B3和T1吸附后的Fermi能级附近的主态密度峰

    Figure  5.  Dominant DOS peaks near the Fermi level after adsorption of O2 at B3 and T1

    图  6  O2在ZrCo(110) B3吸附位置的态密度:(a) 吸附前;(b) 吸附后

    Figure  6.  The density of states of the ZrCo(110) surface of O2: (a) before adsorption; (b) after adsorption

    图  7  O2在B3吸附的差分电荷密度图:(a) 侧视图;(b) 俯视图

    Figure  7.  The differential charge density of O2 adsorption at B3 on the ZrCo(110) surface: (a) the side view; (b) the top view

    图  8  O2在T1吸附的差分电荷密度图:(a) 侧视图;(b) 俯视图

    Figure  8.  The differential charge density of O2 adsorption at T1 on the ZrCo(110) surface: (a) the side view; (b) the top view

    表  1  ZrCo晶格常数

    Table  1.   Experimental and calculated lattice parameters for the ZrCo

    methodsa
    calculation[17]3.180
    experiment[18]3.196
    this work3.181
    下载: 导出CSV

    表  2  Zr和Co原子弛豫前后的z坐标(单位:Å)

    Table  2.   The z coordinates of Zr and Co atoms after relaxation for ZrCo(110) (unit: Å)

    layerbefore relaxationafter relaxationdifference of z coordinate after relaxation
    Co (1)6.7486.479−0.269
    Zr (1)6.7486.8050.057
    Co (2)4.4984.6030.105
    Zr (2)4.4984.5040.006
    下载: 导出CSV

    表  3  O2在ZrCo(110)表面稳定吸附构型的结构参数和吸附能

    Table  3.   The structural parameters and energy of stable adsorption configuration of O2 on the ZrCo(110) surface

    modeld0chemical bond 1d1chemical bond 2d2Eads/eV
    T11.309O1—Zr201.918−0.027
    T23.472O1—Co161.879O2—Co241.924−5.786
    O1—Co201.935O2—Co201.929
    O1—Zr202.216O2—Zr122.193
    O1—Zr82.218O2—Zr242.197
    H12.456O1—Co201.835O2—Co81.836−6.782
    O1—Zr202.100O2—Zr202.099
    O1—Zr242.100O2—Zr242.099
    H23.203O1—Co201.969O2—Zr201.771−5.406
    O1—Co161.969
    O1—Zr82.206
    O1—Zr202.231
    O1—Zr192.238
    B11.369O1—Zr242.097−0.513
    O1—Zr202.098
    B22.435O1—Co201.958O2—Zr202.028−3.789
    O1—Co161.959O2—Zr82.030
    O1—Zr202.024
    O1—Zr82.033
    O1—Zr192.042
    B33.724O1—Co201.952O2—Co41.955−8.124
    O1—Zr202.041O2—Zr162.039
    O1—Zr242.046O2—Zr202.046
    下载: 导出CSV

    表  4  O原子吸附后的净电荷分布

    Table  4.   The net charge distribution of O1 and O2 in each structure

    modelO1O2Qtotal
    T1−0.27−0.30−0.57
    T2−0.68−0.68−1.36
    H1−0.65−0.65−1.3
    H2−0.70−0.55−1.25
    B1−0.39−0.39−0.78
    B2−0.63−0.69−1.32
    B3−0.68−0.69−1.37
    下载: 导出CSV
  • [1] REN J W, MUSYOKA N M, LANGMI H W, et al. Current research trends and perspectives on materials-based hydrogen storage solutions: a critical review[J]. International Journal of Hydrogen Energy, 2017, 42(1): 289-311. doi: 10.1016/j.ijhydene.2016.11.195
    [2] 高伟业, 张赛, 张杰, 等. 含湿相变粗糙多孔材质的热质耦合分形研究[J]. 应用数学和力学, 2022, 43(5): 561-568

    GAO Weiye, ZHANG Sai, ZHANG Jie, et al. Thermo-mass coupling fractal study of wet phase-change rough porous materials[J]. Applied Mathematics and Mechanics, 2022, 43(5): 561-568.(in Chinese)
    [3] 董彦辰, 张业伟, 陈立群. 惯容器非线性减振与能量采集一体化模型动力学分析[J]. 应用数学和力学, 2019, 40(9): 968-979

    DONG Yanchen, ZHANG Yewei, CHEN Liqun. Dynamic analysis of the nonlinear vibration absorber-energy harvester integration model with inerters[J]. Applied Mathematics and Mechanics, 2019, 40(9): 968-979.(in Chinese)
    [4] ZHANG F, ZHAO P C, NIU M, et al. The survey of key technologies in hydrogen energy storage[J]. International Journal of Hydrogen Energy, 2016, 41(33): 14535-14552. doi: 10.1016/j.ijhydene.2016.05.293
    [5] RAJAURA R S, SRIVASTAVA S, SHARMA P K, et al. Structural and surface modification of carbon nanotubes for enhanced hydrogen storage density[J]. Nano-Structures & Nano-Objects, 2018, 14: 57-65.
    [6] KOJIMA Y. Hydrogen storage materials for hydrogen and energy carriers[J]. International Journal of Hydrogen Energy, 2019, 44(33): 18179-18192. doi: 10.1016/j.ijhydene.2019.05.119
    [7] WANG F, LI R F, DING C P, et al. Recent progress on the hydrogen storage properties of ZrCo-based alloys applied in international thermonuclear experimental reactor (ITER)[J]. Progress in Natural Science: Materials International, 2017, 27(1): 58-65. doi: 10.1016/j.pnsc.2016.12.018
    [8] LIANG Z Q, XIAO X Z, YAO Z D, et al. A new strategy for remarkably improving anti-disproportionation performance and cycling stabilities of ZrCo-based hydrogen isotope storage alloys by Cu substitution and controlling cutoff desorption pressure[J]. International Journal of Hydrogen Energy, 2019, 44(52): 28242-28251. doi: 10.1016/j.ijhydene.2019.09.077
    [9] YAO Z D, XIAO X Z, LIANG Z Q, et al. Improvement on the kinetic and thermodynamic characteristics of Zr1–xNbxCo (x = 0~0.2) alloys for hydrogen isotope storage and delivery[J]. Journal of Alloys and Compounds, 2019, 784: 1062-1070. doi: 10.1016/j.jallcom.2019.01.100
    [10] KOU H Q, SANG G, LUO W H, et al. Comparative study of full-scale thin double-layered annulus beds loaded with ZrCo, Zr0.8Hf0.2Co and Zr0.8Ti0.2Co for recovery and delivery of hydrogen isotopes[J]. International Journal of Hydrogen Energy, 2015, 40(34): 10923-10933. doi: 10.1016/j.ijhydene.2015.06.153
    [11] ZHAO Y M, LI R F, TANG R H, et al. Effect of Ti substitution on hydrogen storage properties of Zr1−xTixCo (x = 0, 0.1, 0.2, 0.3) alloys[J]. Journal of Energy Chemistry, 2014, 23(1): 9-14. doi: 10.1016/S2095-4956(14)60111-X
    [12] WENG C C, XIAO X Z, HUANG X, et al. Effect of Mn substitution for Co on the structural, kinetic, and thermodynamic characteristics of ZrCo1–xMnx (x = 0~0.1) alloys for tritium storage[J]. International Journal of Hydrogen Energy, 2017, 42(47): 28498-28506. doi: 10.1016/j.ijhydene.2017.09.157
    [13] GLUGLA M, LÄSSER R, DÖRR L, et al. The inner deuterium/tritium fuel cycle of ITER[J]. Fusion Energy and Design, 2003, 69: 39-43. doi: 10.1016/S0920-3796(03)00231-X
    [14] ZHANG G H, TANG T, SANG G, et al. Effect of Ti modification on hydrogenation properties of ZrCo in the presence of CO contaminant gas[J]. Rare Metal Materials and Engineering, 2017, 46(11): 3366-3373.
    [15] GARRITY K F, BENNETT J W, RABE K M, et al. Pseudopotentials for high-throughput DFT calculations[J]. Computational Materials Science, 2014, 81: 446-452. doi: 10.1016/j.commatsci.2013.08.053
    [16] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. doi: 10.1103/PhysRevLett.77.3865
    [17] CHATTARAJ D, PARIDA S C, DASH S, et al. Structural, electronic and thermodynamic properties of ZrCo and ZrCoH3: a first-principles study[J]. International Journal of Hydrogen Energy, 2012, 37(24): 18952-18958. doi: 10.1016/j.ijhydene.2012.09.108
    [18] GACHON J C, SELHAOUI N, ABA B, et al. Comparison between measured and predicted enthalpies of formation[J]. Journal of Phase Equilibria, 1992, 13: 506-511. doi: 10.1007/BF02665763
    [19] WANG Q Q, KONG X G, YU Y, et al. Influence of the Fe-doping on hydrogen behavior on the ZrCo surface[J]. International Journal of Hydrogen Energy, 2021, 46(68): 33877-33888. doi: 10.1016/j.ijhydene.2021.07.198
    [20] 蒙大桥, 罗文华, 李赣, 等. Pu(100)表面吸附CO2的密度泛函研究[J]. 物理学报, 2009, 58(12): 8224-8229 doi: 10.3321/j.issn:1000-3290.2009.12.017

    MENG Daqiao, LUO Wenhua, LI Gan, et al. Density functional study of CO2 adsorption on Pu(100) surface[J]. Acta Physica Sinica, 2009, 58(12): 8224-8229.(in Chinese) doi: 10.3321/j.issn:1000-3290.2009.12.017
    [21] DEVILLERS M, SIRCH M, PENZHORN R D. Hydrogen-induced disproportionation of the intermetallic zirconium-cobalt compound ZrCo[J]. Chemistry of Materials, 1992, 4(3): 631-639. doi: 10.1021/cm00021a025
    [22] CHEN Q, HUANG Z W, ZHAO Z D, et al. Thermal stabilities, elastic properties and electronic structures of B2-MgRe (Re=Sc, Y, La) by first-principles calculations[J]. Computational Materials Science, 2013, 67: 196-202. doi: 10.1016/j.commatsci.2012.08.010
    [23] WANG L S, DING J, HUANG X, et al. Influence of Ti/Hf doping on hydrogen storage performance and mechanical properties of ZrCo compounds: a first principle study[J]. International Journal of Hydrogen Energy, 2018, 43(29): 13328-13338. doi: 10.1016/j.ijhydene.2018.05.061
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  517
  • HTML全文浏览量:  195
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-29
  • 修回日期:  2022-12-31
  • 网络出版日期:  2023-02-15
  • 刊出日期:  2023-02-15

目录

    /

    返回文章
    返回