留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑页岩塑性变形的水力裂缝与天然裂缝相交模拟研究

曹玉玲 何强胜 刘闯

曹玉玲, 何强胜, 刘闯. 考虑页岩塑性变形的水力裂缝与天然裂缝相交模拟研究[J]. 应用数学和力学, 2023, 44(6): 679-693. doi: 10.21656/1000-0887.430300
引用本文: 曹玉玲, 何强胜, 刘闯. 考虑页岩塑性变形的水力裂缝与天然裂缝相交模拟研究[J]. 应用数学和力学, 2023, 44(6): 679-693. doi: 10.21656/1000-0887.430300
CAO Yuling, HE Qiangsheng, LIU Chuang. Numerical Simulation of Hydraulic Fractures Intersecting Natural Fractures in Shale With Plastic Deformation[J]. Applied Mathematics and Mechanics, 2023, 44(6): 679-693. doi: 10.21656/1000-0887.430300
Citation: CAO Yuling, HE Qiangsheng, LIU Chuang. Numerical Simulation of Hydraulic Fractures Intersecting Natural Fractures in Shale With Plastic Deformation[J]. Applied Mathematics and Mechanics, 2023, 44(6): 679-693. doi: 10.21656/1000-0887.430300

考虑页岩塑性变形的水力裂缝与天然裂缝相交模拟研究

doi: 10.21656/1000-0887.430300
基金项目: 

国家自然科学基金项目 12102173

安徽省自然科学基金项目 1908085QA32

江苏省高校自然科学研究面上项目 21KJB130001

详细信息
    作者简介:

    曹玉玲(1996—),女,硕士(E-mail: 1319647425@qq.com)

    何强胜(1999—),男,硕士(E-mail: 1353232771@qq.com)

    通讯作者:

    刘闯(1992—),男,副教授,博士(通讯作者. E-mail: cliu2013@ustc.edu.cn)

  • 中图分类号: TE312

Numerical Simulation of Hydraulic Fractures Intersecting Natural Fractures in Shale With Plastic Deformation

  • 摘要: 水力压裂中,页岩的塑性变形和大量天然弱界面的存在,给水力裂缝扩展形态的预测带来了巨大的挑战.该文基于有限元法建立了一个完全耦合的弹塑性水力压裂数值模型,并考虑了天然裂缝和层理面.数值模型得到了KGD解析解和Blanton曲线的验证.模拟结果显示:与线弹性的水力压裂结果相比,岩石中的塑性变形使得水力裂缝更容易进入天然弱界面;裂缝扩展过程中,岩石塑性变形区域主要集中在储层内;当岩石发生韧性破坏时,水力裂缝更容易贯穿层理面;水力裂缝在高注入速率下,得益于较大驱动力,裂缝能够直接穿过天然裂缝和层理面.研究结果为页岩储藏中水力裂缝的扩展规律提供了新的认识.
  • 图  1  水力裂缝半长-时间的曲线图

    Figure  1.  The hydraulic fracture half length-time curve

    图  2  水力裂缝与天然裂缝交叉角度-地应力差曲线图

    Figure  2.  The approaching angle between the hydraulic fracture and the natural fracture-stress difference curve

    图  3  分层页岩模型的几何形状和边界条件

    Figure  3.  Geometric and boundary conditions of the layered shale model

    图  4  不同注入速率下弹性模型(左)和弹塑性模型(右)裂缝几何形态对比

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  4.  Comparison of crack morphologies between the elastic model (left) and the elasto-plastic model (right)at different injection rates

    图  5  分布在裂缝附近的等效塑性应变

    Figure  5.  Equivalent plastic strains distributed in the vicinity of the crack

    图  6  储层和隔层中水力裂缝在不同强度下的断裂机制(方案A)

    Figure  6.  Fracture mechanisms of hydraulic fractures in the pay zone and the barrier at different strengths(plan A)

    图  7  储层和隔层中水力裂缝在不同强度下的断裂机制(方案B)

    Figure  7.  Fracture mechanisms of hydraulic fractures in the pay zone and the barrier at different strengths (plan B)

    图  8  裂缝形态随水力裂缝与层理面的交叉角度的变化

    Figure  8.  Variations of the fracture morphology with the approaching angle between the hydraulic fracture and the bedding plane

    图  9  裂缝扩展随地应力差的变化

    Figure  9.  Variations of the crack extension with the stress difference

    图  10  裂缝扩展随层理面抗拉强度的变化

    Figure  10.  Variations of the crack extension with the tensile strength of the bedding plane

    图  11  裂缝扩展随注入速率的变化

    Figure  11.  Variations of the fracture extension with the injection rate

    图  12  分层页岩中交叉角度-地应力差的散点图

    Figure  12.  The scatter plot of the stress difference vs.the approaching angle in the layered shale

    表  1  分层页岩的输入参数

    Table  1.   The input parameters of the layered shale

    parameter pay zone barrier bedding plane
    height H/m 10 10 -
    elastic modulus E/GPa 15 20 20
    Poisson’s ratio ν 0.25 0.2 -
    permeability k/mD 10 1 -
    rock tensile strength T/MPa 1 2 1.5
    vertical in-situ stress Vmax/MPa 9 9 -
    minimum horizontal in-situ stress hmin/MPa 5 7 -
    maximum horizontal in-situ stress hmax/MPa 8 8 -
    fluid leakoff coefficient (HF & NF) km/(m/(Pa·s)) 1×10-13 1×10-14 1×10-13
    fluid viscosity μ/(Pa·s) 0.001 0.001 0.001
    下载: 导出CSV

    表  2  页岩的塑性参数

    Table  2.   The input plastic parameters of the shale

    parameter value
    hardening constant hr0 0.35
    hardening parameter ξ 0.01
    yield stress c/MPa 11.25
    yield parameter α -0.365
    yield parameter β 1.980 4
    approaching angle θ/(°) 80
    下载: 导出CSV
  • [1] WENG X. Modeling of complex hydraulic fractures in naturally fractured formation[J]. Journal of Unconventional Oil and Gas Resources, 2015, 9: 114-135. doi: 10.1016/j.juogr.2014.07.001
    [2] SHANG X, LIU J, GAO X, et al. Analysis on nonlinear effect of unsteady percolation in the inhomogeneous shale gas reservoir[J]. Applied Mathematics and Mechanics, 2020, 41(1): 105-122. doi: 10.1007/s10483-020-2553-5
    [3] LIU C, ZHAO A G, WU H A. Competition growth of biwing hydraulic fractures in naturally fractured reservoirs[J]. Gas Science and Engineering, 2023, 109: 204873. doi: 10.1016/j.jgsce.2023.204873
    [4] CAO Y, HE Q, LIU C. Numerical investigation of fracture morphology characteristics in heterogeneous reservoirs[J]. Processes, 2022, 10(12): 2604. doi: 10.3390/pr10122604
    [5] FLEWELLING S A, TYMCHAK M P, WARPINSKI N. Hydraulic fracture height limits and fault interactions in tight oil and gas formations[J]. Geophysical Research Letters, 2013, 40(14): 3602-3606. doi: 10.1002/grl.50707
    [6] SUN C, ZHENG H, LIU W D, et al. Numerical simulation analysis of vertical propagation of hydraulic fracture in bedding plane[J]. Engineering Fracture Mechanics, 2020, 232: 107056. doi: 10.1016/j.engfracmech.2020.107056
    [7] VAHAB M, HIRMAND M R, JAFARI A, et al. Numerical analysis of multiple hydro-fracture growth in layered media based on a non-differentiable energy minimization approach[J]. Engineering Fracture Mechanics, 2021, 241: 107361. doi: 10.1016/j.engfracmech.2020.107361
    [8] DEHGHAN A N. An experimental investigation into the influence of pre-existing natural fracture on the behavior and length of propagating hydraulic fracture[J]. Engineering Fracture Mechanics, 2020, 240: 107330. doi: 10.1016/j.engfracmech.2020.107330
    [9] ZOU J, JIAO Y Y, TAN F, et al. Complex hydraulic-fracture-network propagation in a naturally fractured reservoir[J]. Computers and Geotechnics, 2021, 135: 104165. doi: 10.1016/j.compgeo.2021.104165
    [10] YANG Y, JIAO Z, LONGHUAN D, et al. Numerical simulation of shale reservoir fluid-driven fracture network morphology based on global CZM[J]. Frontiers in Earth Science, 2021, 9: 775446. doi: 10.3389/feart.2021.775446
    [11] LAN H, MARTIN C D, HU B. Effect of heterogeneity of brittle rock on micromechanical extensile behavior during compression loading[J]. Journal of Geophysical Research: Solid Earth, 2010, 115: B01202.
    [12] ZHANG Y Z, DUSSEAULT M B, YASSIR N A. Effects of rock anisotropy and heterogeneity on stress distributions at selected sites in North America[J]. Engineering Geology, 1994, 37(3/4): 181-197.
    [13] WU M, WANG W, SONG Z, et al. Exploring the influence of heterogeneity on hydraulic fracturing based on the combined finite-discrete method[J]. Engineering Fracture Mechanics, 2021, 252: 107835. doi: 10.1016/j.engfracmech.2021.107835
    [14] YI L P, WAISMAN H, YANG ZZ, et al. A consistent phase field model for hydraulic fracture propagation in poroelastic media[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 372: 113396. doi: 10.1016/j.cma.2020.113396
    [15] YOSHIOKA K, MOLLAALI M, KOLDITZ O. Variational phase-field fracture modeling with interfaces[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 384: 113951. doi: 10.1016/j.cma.2021.113951
    [16] JU Y, LIU P, CHEN J, et al. CDEM-based analysis of the 3D initiation and propagation of hydrofracturing cracks in heterogeneous glutenites[J]. Journal of Natural Gas Science and Engineering, 2016, 35: 614-623. doi: 10.1016/j.jngse.2016.09.011
    [17] LI X, JAFFAL H, FENG Y, et al. Wellbore breakouts: Mohr-Coulomb plastic rock deformation, fluid seepage, and time-dependent mudcake buildup[J]. Journal of Natural Gas Science and Engineering, 2018, 52: 515-528. doi: 10.1016/j.jngse.2018.02.006
    [18] 范白涛, 邓金根, 刘伟, 等. 地层塑性对水力压裂裂缝扩展影响的数值模拟[J]. 科学技术与工程, 2018, 18(28): 65-71. doi: 10.3969/j.issn.1671-1815.2018.28.008

    FAN Baitao, DENG Jingen, LIU Wei, et al. Numerical simulation of the effect of formation plasticity on the propagation of hydraulic fractures[J]. Science Technology and Engineering, 2018, 18(28): 65-71. (in Chinese) doi: 10.3969/j.issn.1671-1815.2018.28.008
    [19] 唐红梅, 周福川, 陈松, 等. 高烈度下双裂缝主控结构面危岩的断裂破坏机制分析[J]. 应用数学和力学, 2021, 42(6): 645-655. doi: 10.21656/1000-0887.410187

    TANG Hongmei, ZHOU Fuchuan, CHEN Song, et al. Fracture mechanism of unstable rock with double-crack control discontinuity subjected to high earthquake intensities[J]. Applied Mathematics and Mechanics, 2021, 42(6): 645-655. (in Chinese) doi: 10.21656/1000-0887.410187
    [20] 冯国益, 肖俊华, 苏梦雨. 考虑表面效应时孔边均布径向多裂纹Ⅲ型断裂力学分析[J]. 应用数学和力学, 2020, 41(4): 376-385. doi: 10.21656/1000-0887.400177

    FENG Guoyi, XIAO Junhua, SU Mengyu. Fracture mechanics analysis of mode-Ⅲ radial multi cracks on the edge of a hole with surface effects[J]. Applied Mathematics and Mechanics, 2020, 41(4): 376-385. (in Chinese) doi: 10.21656/1000-0887.400177
    [21] 姚军, 黄朝琴, 刘文政, 等. 深层油气藏开发中的关键力学问题[J]. 中国科学: 物理学力学天文学, 2018, 48(4): 5-31. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201804001.htm

    YAO Jun, HUANG Zhaoqin, LIU Wenzheng, et al. Key mechanical problems in the development of deep oil and gas reservoirs[J]. Scientia Sinica: Physica, Mechanica & Astronomica, 2018, 48(4): 5-31. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201804001.htm
    [22] GUO Y, YANG C, WANG L, et al. Study on the influence of bedding density on hydraulic fracturing in shale[J]. Arabian Journal for Science and Engineering, 2018, 43(11): 6493-6508. doi: 10.1007/s13369-018-3263-6
    [23] HUANG B, LIU J. Fully three-dimensional propagation model of horizontal borehole hydraulic fractures in strata under the effect of bedding planes[J]. Energy Exploration & Exploitation, 2018, 36(5): 1189-1209.
    [24] ZENG Y, CHENG W, ZHANG X, et al. A criterion for identifying a mixed-mode Ⅰ/Ⅱ hydraulic fracture crossing a natural fracture in the subsurface[J]. Energy Exploration & Exploitation, 2020, 38(6): 2507-2520.
    [25] TAHERI-SHAKIB J, GHADERI A, HOSSEINI S, et al. Debonding and coalescence in the interaction between hydraulic and natural fracture: accounting for the effect of leak-off[J]. Journal of Natural Gas Science and Engineering, 2016, 36: 454-462. doi: 10.1016/j.jngse.2016.10.056
    [26] 程正华, 艾池, 张军, 等. 胶结型天然裂缝对水力压裂裂缝延伸规律的影响[J]. 新疆石油地质, 2022, 43(4): 433-439. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202204008.htm

    CHENG Zhenghua, AI Chi, ZHANG Jun, et al. Influences of cemented natural fractures on propagation of hydraulic fractures[J]. Xinjiang Petroleum Geology, 2022, 43(4): 433-439. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202204008.htm
    [27] WAN L, CHEN M, HOU B, et al. Experimental investigation of the effect of natural fracture size on hydraulic fracture propagation in 3D[J]. Journal of Structural Geology, 2018, 116: 1-11. doi: 10.1016/j.jsg.2018.08.006
    [28] ZHOU J, ZENG Y, GUO Y, et al. Effect of natural filling fracture on the cracking process of shale Brazilian disc containing a central straight notched flaw[J]. Journal of Petroleum Science and Engineering, 2021, 196: 107993. doi: 10.1016/j.petrol.2020.107993
    [29] 陈治喜, 陈勉, 黄荣樽, 等. 层状介质中水力裂缝的垂向扩展[J]. 石油大学学报(自然科学版), 1997, 21(4): 23-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX704.006.htm

    CHEN Zhixi, CHEN Mian, HUANG Rongzun, et al. Vertical growth of hydraulic fracture in layered formations[J]. Journal of the University of Petroleum, 1997, 21(4): 23-26. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX704.006.htm
    [30] CHANG X, GUO Y, ZHOU J, et al. Numerical and experimental investigations of the interactions between hydraulic and natural fractures in shale formations[J]. Energies, 2018, 11(10): 2541. doi: 10.3390/en11102541
    [31] ZHANG Y, LIU Z, HAN B, et al. Numerical study of hydraulic fracture propagation in inherently laminated rocks accounting for bedding plane properties[J]. Journal of Petroleum Science and Engineering, 2022, 210: 109798. doi: 10.1016/j.petrol.2021.109798
    [32] WANG D, SHI F, QIN H, et al. Failure patterns and mechanisms of hydraulic fracture propagation behavior in the presence of naturally cemented fractures[J]. Computer Modeling in Engineering & Sciences, 2021, 126(3): 891-914.
    [33] WANG H Y. Poro-elasto-plastic modeling of complex hydraulic fracture propagation: simultaneous multi-fracturing and producing well interference[J]. Acta Mechanica, 2016, 227(2): 507-525. doi: 10.1007/s00707-015-1455-7
    [34] LIU C, WANG Z. Numerical simulation of hydraulic fracture propagation in shale with plastic deformation[J]. International Journal of Fracture, 2022, 238: 115-132. doi: 10.1007/s10704-022-00659-7
    [35] YANG Y, LI X, JU Y. Influence mechanisms of plasticity and horizontal stress difference on the fracture propagation in plastic reservoir rocks: a 3D XFEM-based plastic fracturing model[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2022, 8(5): 145. doi: 10.1007/s40948-022-00453-8
    [36] ZENG Q D, YAO J, SHAO J. Numerical study of hydraulic fracture propagation accounting for rock anisotropy[J]. Journal of Petroleum Science and Engineering, 2018, 160: 422-432. doi: 10.1016/j.petrol.2017.10.037
    [37] ZHAO H, CHEN M. Extending behavior of hydraulic fracture when reaching formation interface[J]. Journal of Petroleum Science and Engineering, 2010, 74(1/2): 26-30.
    [38] PAPANASTASIOU P. The influence of plasticity in hydraulic fracturing[J]. International Journal of Fracture, 1997, 84(1): 61-79. doi: 10.1023/A:1007336003057
    [39] PAPANASTASIOU P. The effective fracture toughness in hydraulic fracturing[J]. International Journal of Fracture, 1999, 96(2): 127-147. doi: 10.1023/A:1018676212444
    [40] GRÄSLE W, PLISCHKE I. LT-A experiment: mechanical behavior of opalinus clay, data report from phase 15[R]. 2010.
    [41] BOONE T J, INGRAFFEA A R. A numerical procedure for simulation of hydraulically-driven fracture propagation in poroelastic media[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1990, 14(1): 27-47. doi: 10.1002/nag.1610140103
    [42] BIOT M A. General theory of three-dimensional consolidation[J]. Journal of Applied Physics, 1941, 12(2): 155-164. doi: 10.1063/1.1712886
    [43] TOMAR V, ZHAI J, ZHOU M. Bounds for element size in a variable stiffness cohesive finite element model[J]. International Journal for Numerical Methods in Engineering, 2004, 61(11): 1894-1920. doi: 10.1002/nme.1138
    [44] CHEN Z, BUNGER A P, ZHANG X, et al. Cohesive zone finite element-based modeling of hydraulic fractures[J]. Acta Mechanica Solida Sinica, 2009, 22(5): 443-452. doi: 10.1016/S0894-9166(09)60295-0
    [45] WANG H Y. Hydraulic fracture propagation in naturally fractured reservoirs: complex fracture or fracture networks[J]. Journal of Natural Gas Science and Engineering, 2019, 68: 102911. doi: 10.1016/j.jngse.2019.102911
    [46] GEERTSMA J, DE KLERK F. A rapid method of predicting width and extent of hydraulically induced fractures[J]. Journal of Petroleum Technology, 1969, 21(12): 1571-1581. doi: 10.2118/2458-PA
    [47] XU W, ZHAO J, RAHMAN SS, et al. A comprehensive model of a hydraulic fracture interacting with a natural fracture: analytical and numerical solution[J]. Rock Mechanics and Rock Engineering, 2019, 52(4): 1095-1113. doi: 10.1007/s00603-018-1608-9
    [48] SANTILLÁN D, JUANES R, CUETO-FELGUEROSO L. Phase field model of fluid-driven fracture in elastic media: immersed-fracture formulation and validation with analytical solutions[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(4): 2565-2589. doi: 10.1002/2016JB013572
    [49] BLANTON T L. An experimental study of interaction between hydraulically induced and pre-existing fractures[C]//SPE Unconventional Gas Recovery Symposium. Pittsburgh, Pennsylvania, 1982.
    [50] SUN T, ZENG Q, XING H. A quantitative model to predict hydraulic fracture propagating across cemented natural fracture[J]. Journal of Petroleum Science and Engineering, 2022, 208: 109595. doi: 10.1016/j.petrol.2021.109595
    [51] LIU C, ZHANG J N, YU H, et al. New insights of natural fractures growth and stimulation optimization based on a three-dimensional cohesive zone model[J]. Journal of Natural Gas Science and Engineering, 2020, 76: 103165. doi: 10.1016/j.jngse.2020.103165
    [52] PARISIO F, SAMAT S, LALOUI L. Constitutive analysis of shale: a coupled damage plasticity approach[J]. International Journal of Solids and Structures, 2015, 75: 88-98.
    [53] SONG Y B, LU W Y, HE C C, et al. Numerical simulation of the influence of natural fractures on hydraulic fracture propagation[J]. Geofluids, 2020, 2020: 8878548.
    [54] LI P, DONG Y, WANG S, et al. Numerical modelling of interaction between hydraulic fractures and natural fractures by using the extended finite element method[J]. Advances in Civil Engineering, 2020, 2020: 8848900.
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  435
  • HTML全文浏览量:  161
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-29
  • 修回日期:  2023-01-30
  • 刊出日期:  2023-06-01

目录

    /

    返回文章
    返回