Experimental Study on the Flexural Ductility of BFRP Bar Concrete Beams With Bamboo Fiber and Steel Wire Mesh
-
摘要:
为研究竹纤维和钢丝网对玄武岩纤维筋混凝土梁抗弯延性的影响,该研究以竹纤维长度(0 mm、30 mm、45 mm)及钢丝网布置范围(无、1/2最大弯矩点间布置、全梁段布置)为变量,对7根基于竹纤维和钢丝网增强的玄武岩纤维筋混凝土梁进行了弯曲破坏试验,对其初裂荷载、裂缝开展、极限荷载、变形情况等进行了检测。通过试验数据分析了纤维长度和钢丝网布置范围对试件抗裂、抗变形性能的影响;借助函数模型得到7根试验梁的等效屈服点,计算出了试件的延性系数。结果表明竹纤维和钢丝网的掺入使玄武岩纤维筋混凝土梁的开裂荷载提高了12% ~ 68%,减小了裂缝分布间距及长度发展速度,同等荷载下试验梁的变形减小,延性系数增大了1.58% ~ 31.75%。
Abstract:To study the effects of bamboo fiber and steel wire mesh on the flexural ductility of basalt fiber reinforced polymer(BFRP)bar concrete beams, 7 BFRP bar concrete beams with bamboo fiber and steel wire mesh were tested with different bamboo fiber lengths (0 mm, 30 mm and 45 mm) and different steel wire mesh layout ranges (0, 1/2 maximum bending moment point layout and full beam length layout). The flexural failure tests of the 7 beams were carried out, and the initial crack loads, the crack developments, the ultimate loads and the deformations were detected. The effects of the fiber length and the wire mesh layout range on the crack resistance and the deformation resistance of the specimens were analyzed based on the test data. With the function model, the equivalent yield points of the 7 test beams were obtained, and their ductility coefficients were calculated. The results show that, the addition of bamboo fiber and steel wire mesh increases the cracking loads of BFRP bar concrete beams by 12%~68%, decreases the crack spacings and the crack length development speed, reduces the test beam deformation under the same load, and increases the ductility coefficient by 1.58%~31.75%.
-
Key words:
- wire mesh /
- bamboo fiber /
- BFRP rebar /
- concrete beam /
- ductility
-
表 1 基体混凝土配合比
Table 1. Mix proportions of concrete
water cement crushed stone medium sand 185 kg/m3 420 kg/m3 1273 kg/m3 572 kg/m3 表 2 竹纤维性能参数
Table 2. Performance parameters of bamboo fiber
material fiber diameter fiber length density bamboo fiber 1.5 mm 30 mm,45 mm 848.826 kg/m3 表 3 BFRP筋力学性能
Table 3. Mechanical properties of BFRP bars
diameter tensile strength elastic modulus 20 mm 1010.77 MPa 44 GPa 表 4 试验梁参数
Table 4. Parameters of test beams
test beam steel wire mesh layout bamboo fiber length l/mm L-0-0 – 0 L-0-30 – 30 L-1/2-30 between the 1/2 maximum bending moment points 30 L-1/2-45 between the 1/2 maximum bending moment points 45 L-1-0 the whole beam section 0 L-1-30 the whole beam section 30 L-1-45 the whole beam section 45 表 5 主要试验结果
Table 5. Main test results
test beam Pcr/kN Pu/kN Δu/mm L-0-0 25 340 38 L-0-30 38 329 36 L-1/2-30 32 284 35 L-1/2-45 31 337 37 L-1-0 42 397 32 L-1-30 30 340 43 L-1-45 28 343 35 表 6 主要试验结果
Table 6. Main test results
test beam Py/kN Δu/mm Δy/mm μ L-0-0 318 38 31.47 1.21 L-0-30 298 36 27.06 1.33 L-1/2-30 256 35 24.13 1.45 L-1/2-45 301 37 29.37 1.26 L-1-0 353 32 26.09 1.23 L-1-30 299 43 27.03 1.59 L-1-45 313 35 25.71 1.36 -
[1] 姜浩, 朱思宇. 玄武岩纤维筋的性能及应用研究综述[J]. 四川建材, 2017, 43(8): 1-2 doi: 10.3969/j.issn.1672-4011.2017.08.001JIANG Hao, ZHU Siyu. Review on properties and application of basalt fiber reinforcement[J]. Sichuan Building Materials, 2017, 43(8): 1-2.(in Chinese) doi: 10.3969/j.issn.1672-4011.2017.08.001 [2] 吴刚, 朱莹, 董志强, 等. 碱性环境中BFRP筋耐腐蚀性能试验研究[J]. 土木工程学报, 2014, 47(8): 32-41 doi: 10.15951/j.tmgcxb.2014.08.029WU Gang, ZHU Ying, DONG Zhiqiang, et al. Experimental study on corrosion resistance of BFRP bars in alkaline environment[J]. China Civil Engineering Journal, 2014, 47(8): 32-41.(in Chinese) doi: 10.15951/j.tmgcxb.2014.08.029 [3] MONALDO E, NERILLI F, VAIRO G. Basalt-based fiber-reinforced materials and structural applications in civil engineering[J]. Composite Structures, 2019, 214: 246-263. doi: 10.1016/j.compstruct.2019.02.002 [4] 尹世平, 华云涛, 徐世烺. FRP配筋混凝土结构研究进展及其应用[J]. 建筑结构学报, 2021, 42(1): 134-150 doi: 10.14006/j.jzjgxb.2019.0349YIN Shiping, HUA Yuntao, XU Shilang. Research progress and application of FRP reinforced concrete structures[J]. Journal of Building Structures, 2021, 42(1): 134-150.(in Chinese) doi: 10.14006/j.jzjgxb.2019.0349 [5] SHAMASS R, CASHELL K A. Experimental investigation into the flexural behaviour of basalt FRP reinforced concrete members[J]. Engineering Structures, 2020, 220: 110950. doi: 10.1016/j.engstruct.2020.110950 [6] 朱海堂, 程晟钊, 高丹盈, 等. 玄武岩纤维增强聚合物筋钢纤维高强混凝土梁受弯试验及裂缝宽度计算方法研究[J]. 建筑结构学报, 2020, 41(6): 133-142 doi: 10.14006/j.jzjgxb.2018.0333ZHU Haitang, CHENG Shengzhao, GAO Danying, et al. Flexural test and crack width calculation method of basalt fiber reinforced polymer reinforced steel fiber high-strength concrete beam[J]. Journal of Building Structures, 2020, 41(6): 133-142.(in Chinese) doi: 10.14006/j.jzjgxb.2018.0333 [7] LI Z, ZHU H, ZHEN X, et al. Effects of steel fiber on the flexural behavior and ductility of concrete beams reinforced with BFRP rebars under repeated loading[J]. Composite Structures, 2021, 270: 114072. doi: 10.1016/j.compstruct.2021.114072 [8] ABED F, ALHAFIZ A R. Effect of basalt fibers on the flexural behavior of concrete beams reinforced with BFRP bars[J]. Composite Structures, 2019, 215: 23-34. doi: 10.1016/j.compstruct.2019.02.050 [9] QESHTA I M I, SHAFIGH P, JUMAAT M Z, et al. The use of wire mesh-epoxy composite for enhancing the flexural performance of concrete beams[J]. Materials & Design, 2014, 60: 250-259. [10] 吴智深, 汪昕, 史健喆. 玄武岩纤维复合材料性能提升及其新型结构[J]. 工程力学, 2020, 37(5): 1-14WU Zhishen, WANG Xin, SHI Jianzhe. Improvement of properties and new structures of basalt fiber composites[J]. Engineering Mechanics, 2020, 37(5): 1-14.(in Chinese) [11] 李浪, 王清远, 董江峰. 纤维增强地聚物混凝土高温后抗折性能[J]. 应用数学和力学, 2014, 35(S1): 290-294LI Lang, WANG Qingyuan, DONG Jiangfeng. Flexure performance of fiber-reinforced geopolymer concrete after high temperature[J]. Applied Mathematics and Mechanics, 2014, 35(S1): 290-294.(in Chinese) [12] 董志强, 吴刚. FRP筋增强混凝土结构耐久性能研究进展[J]. 土木工程学报, 2019, 52(10): 1-19 doi: 10.15951/j.tmgcxb.2019.10.001DONG Zhiqiang, WU Gang. Research progress on durability of FRP bars reinforced concrete structures[J]. China Civil Engineering Journal, 2019, 52(10): 1-19.(in Chinese) doi: 10.15951/j.tmgcxb.2019.10.001 [13] 周杰, 赵婷婷, 陈青青, 等. 基于GoogLeNet的混凝土细观模型应力-应变曲线预测[J]. 应用数学和力学, 2022, 43(3): 290-299ZHOU Jie, ZHAO Tingting, CHEN Qingqing, et al. Prediction of concrete meso-model stress-strain curves based on GoogLeNet[J]. Applied Mathematics and Mechanics, 2022, 43(3): 290-299.(in Chinese) [14] 吕瑶, 杨尚杰, 肖毅强. 竹材人造板在建筑应用中的绿色价值潜力研究[J]. 建筑科学, 2021, 37(8): 199-210 doi: 10.13614/j.cnki.11-1962/tu.2021.08.26LÜ Yao, YANG Shangjie, XIAO Yiqiang. Research on the green value potential of bamboo wood-based panels in building applications[J]. Building Science, 2021, 37(8): 199-210.(in Chinese) doi: 10.13614/j.cnki.11-1962/tu.2021.08.26 [15] KUMARASAMY K, SHYAMALA G, GEBREYOWHANSE H. Strength properties of bamboo fiber reinforced concrete[J]. IOP Conference Series Materials Science and Engineering, 2020, 981: 032063. doi: 10.1088/1757-899X/981/3/032063 [16] CHIN S C, MOH J, DOH S I, et al. Strengthening of reinforced concrete beams using bamboo fiber[J]. Key Engineering Materials, 2019, 821: 465-471. doi: 10.4028/www.scientific.net/KEM.821.465 [17] 张昌. 竹纤维混凝土力学性能试验研究与耐久性分析[D]. 硕士学位论文. 上海: 上海交通大学, 2014.ZHANG Chang. Experimental study on mechanical properties and durability analysis of bamboo fiber concrete[D]. Master Thesis. Shanghai: Shanghai Jiao Tong University, 2014. (in Chinese) [18] 陈升平, 马小霞, 卢应发, 等. FRP筋钢纤维混凝土梁延性性能研究[J]. 混凝土与水泥制品, 2019, 5: 59-63 doi: 10.19761/j.1000-4637.2019.05.059.05CHEN Shengping, MA Xiaoxia, LU Yingfa, et al. Study on ductility performance of steel fiber reinforced concrete beams with FRP bars[J]. Concrete and Cement Products, 2019, 5: 59-63.(in Chinese) doi: 10.19761/j.1000-4637.2019.05.059.05 [19] 周道成, 常利晨. CFRP修复缺陷钢板应力解析模型[J]. 应用数学和力学, 2021, 42(12): 1276-1286ZHOU Daocheng, CHANG Lichen. Stress analytical model of steel plate repaired with CFRP[J]. Applied Mathematics and Mechanics, 2021, 42(12): 1276-1286.(in Chinese) [20] 刘鑫, 吴倩倩, 于国财, 等. 碳纤维/树脂基复合材料曲壁蜂窝夹芯结构的三点弯曲性能[J]. 应用数学和力学, 2022, 43(5): 490-498LIU Xin, WU Qianqian, YU Guocai, et al. Three-point bending performance of carbon fiber/resin matrix composite with curved wall honeycomb sandwich structure[J]. Applied Mathematics and Mechanics, 2022, 43(5): 490-498.(in Chinese) [21] 孔祥清, 于洋, 邢丽丽, 等. BFRP筋与钢筋混合配筋混凝土梁抗弯性能试验研究[J]. 玻璃钢/复合材料, 2018, 8: 48-54 doi: 10.3969/j.issn.1003-0999.2018.05.007KONG Xiangqing, YU Yang, XING Lili, et al. Experimental study on flexural behavior of concrete beams reinforced with BFRP bars and steel bars[J]. Glass Reinforced Plastic/Composites, 2018, 8: 48-54.(in Chinese) doi: 10.3969/j.issn.1003-0999.2018.05.007 [22] QIN R, ZHOU A, LAU D. Effect of reinforcement ratio on the flexural performance of hybrid FRP reinforced concrete beams[J]. Composites Part B: Engineering, 2017, 108: 200-209. doi: 10.1016/j.compositesb.2016.09.054 [23] 赵李俊. ECC-钢筋混凝土组合结构桥墩抗震性能研究[D]. 硕士学位论文. 重庆: 重庆大学, 2020.ZHAO Lijun. Study on seismic behavior of bridge pier of ECC reinforced concrete composite structure[D]. Master Thesis. Chongqing: Chongqing University, 2020. (in Chinese)