留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

计及多重阻塞的电动汽车移动储能特性建模

严浩源 赵天阳 刘晓川 丁肇豪

严浩源,赵天阳,刘晓川,丁肇豪. 计及多重阻塞的电动汽车移动储能特性建模 [J]. 应用数学和力学,2022,43(11):1214-1226 doi: 10.21656/1000-0887.430303
引用本文: 严浩源,赵天阳,刘晓川,丁肇豪. 计及多重阻塞的电动汽车移动储能特性建模 [J]. 应用数学和力学,2022,43(11):1214-1226 doi: 10.21656/1000-0887.430303
YAN Haoyuan, ZHAO Tianyang, LIU Xiaochuan, DING Zhaohao. Modeling of Electric Vehicles as Mobile Energy Storage Systems Considering Multiple Congestions[J]. Applied Mathematics and Mechanics, 2022, 43(11): 1214-1226. doi: 10.21656/1000-0887.430303
Citation: YAN Haoyuan, ZHAO Tianyang, LIU Xiaochuan, DING Zhaohao. Modeling of Electric Vehicles as Mobile Energy Storage Systems Considering Multiple Congestions[J]. Applied Mathematics and Mechanics, 2022, 43(11): 1214-1226. doi: 10.21656/1000-0887.430303

计及多重阻塞的电动汽车移动储能特性建模

doi: 10.21656/1000-0887.430303
基金项目: 新能源电力系统国家重点实验室开放课题(LAPS21002)
详细信息
    作者简介:

    严浩源(1998—),男,硕士(E-mail:y95112@stu2021.jnu.edu.cn

    赵天阳(1989—),男,副教授,博士(通讯作者. E-mail:matrixeigs@gmail.com

  • 中图分类号: O29

Modeling of Electric Vehicles as Mobile Energy Storage Systems Considering Multiple Congestions

  • 摘要:

    为实现城市交通电力耦合系统在城市道路、充电设施、输电线路阻塞环境下的优化运行,提出了计及多重阻塞的动态交通电力流联合优化方法。首先,基于时空网络模型,提出了计及电动汽车移动、静止、充电、排队模式的队列时空网络模型,构建了适用于电动汽车的车辆调度模型,进而形成动态交通分配模型,以减少交通出行损失。其次,通过优化发电机组、储能等的出力和备用计划,计及城市电网安全、备用约束,构建了安全约束动态经济调度模型,以降低碳排放及发电成本。随后,形成多目标动态优化模型,并将其转换为混合整数凸二次规划问题。最后,在耦合IEEE-30、Sioux Falls系统中验证了所提模型的有效性。

  • 图  1  UCTPSs示意图

    Figure  1.  Schematic of UCTPSs

    图  2  队列时空网络

    注 为了解释图中的颜色,读者可以参考本文的电子网页版本,后同。

    Figure  2.  Time-space networks with queues

    A1  测试系统2单线图

    A1.  Single line diagram for case 2

    图  3  不同情景下总充放电负荷曲线

    Figure  3.  Total charging/discharging load profile under different scenarios

    A2  情景1下的车队移动曲线

    A2.  Routine of electric vehicles fleets under scenario 1

    A3  情景6下的车队移动曲线

    A3.  Routine of electric vehicles fleets under scenario 6

    图  4  情景1和情景4下线路(3, 4)传输功率

    Figure  4.  Power flow on line (3, 4) under scenarios 1 and 4

    图  5  情景1和情景2下道路(1, 4)流量

    Figure  5.  Traffic flow on road (1, 4) under scenarios 1 and 2

    A4  测试系统2情景1下潮流分布图

    A4.  Power flow of case 2 under scenario 1

    A7  测试系统2情景6下车流分布图

    A7.  Traffic flow of case 2 under scenario 6

    A5  测试系统2情景1下车流分布图

    A5.  Traffic flow of case 2 under scenario 1

    A6  测试系统2情景6下潮流分布图

    A6.  Power flow of case 2 under scenario 6

    表  1  仿真情景设计

    Table  1.   Simulation scenarios

    scenarioroad congestioncharging congestionline congestion
    1
    2capacities of roads (1, 2) and (1, 4) are reduced to 25% during 2:00—16:00
    3capacities of charging stations are 1 fleet during 0:00—24:00
    4capacities of lines (2, 4) and (3, 4) are reduced to 20% during 7:00—15:00
    5capacities of roads (1, 2) and (1, 4) are reduced to 25% during 2:00—16:00capacities of charging stations are 1 fleet during 0:00—24:00
    6capacity of roads (1, 2) and (1, 4) are reduced to 25% during 2:00—16:00capacities of charging stations are 1 fleet during 0:00—24:00capacities of lines (2, 4) and (3, 4) are reduced to 20% during 7:00—15:00
    下载: 导出CSV

    表  2  测试系统1各情景下计算结果

    Table  2.   Results under different scenarios for case 1

    scenariototal cost Ctotal/$generation cost Cgeneration/$carbon emission Mcarbon/tunmet traffic demand D
    1104 356.5468 517.911 396.384 900
    2108 356.4868 517.711 396.405 700
    3112 091.6967 626.851 473.506 500
    4115 984.5068 140.421 397.057 300
    5112 092.0967 628.231 473.386 500
    6120 024.6867 663.611 460.728 100
    下载: 导出CSV

    表  3  测试系统2各情景下计算结果

    Table  3.   Results under different scenarios for case 2

    scenariototal cost Ctotal /$generation cost Cgeneration /$carbon emission Mcarbon /tunmet traffic demand D
    1261 404.13175 428.5910588.120
    2287 652.67166 613.5111581.175400
    3263 758.63172 999.9110869.30500
    4271 298.96169 484.6312 292.40400
    5287 657.34167 446.1411479.215400
    6287 713.96167 626.1611464.015400
    下载: 导出CSV

    表  4  测试系统2情景1不同车队下的计算时间与差距

    Table  4.   CPU time and gap under different size of fleets in scenario 1 for case 2

    fleet numbercomputing time t/sgap δ/%
    8<200
    12<300.03
    16< 300.03
    20< 500.03
    24<1000.3
    28< 6000.6
    下载: 导出CSV
  • [1] 杨天宇, 郭庆来, 盛裕杰, 等. 系统互联视角下的城域电力-交通融合网络协同[J]. 电力系统自动化, 2020, 44(11): 1-9 doi: 10.7500/AEPS20190811001

    YANG Tianyu, GUO Qinglai, SHENG Yujie, et al. Coordination of urban integrated electric power and traffic network from perspective of system interconnection[J]. Automation of Electric Power Systems, 2020, 44(11): 1-9.(in Chinese) doi: 10.7500/AEPS20190811001
    [2] 李秋硕, 肖湘宁, 郭静, 等. 电动汽车有序充电方法研究[J]. 电网技术, 2012, 36(12): 32-38 doi: 10.7500/AEPS20210312006

    LI Qiushuo, XIAO Xiangning, GUO Jing, et al. Research on scheme for ordered charging of electric vehicles[J]. Power System Technology, 2012, 36(12): 32-38.(in Chinese) doi: 10.7500/AEPS20210312006
    [3] TONG Li, ZHAO Shen, JIANG Hang, et al. Multi-scenario and multi-objective collaborative optimization of distribution network considering electric vehicles and mobile energy storage systems[J]. IEEE Access, 2021, 9: 55690-55697. doi: 10.7500/AEPS20210315002
    [4] 苏粟, 李玉璟, 夏明超, 等. 基于时空耦合特性的充电站运行状态预测[J]. 电力系统自动化, 2022, 46(3): 23-32

    SU Su, LI Yujing, XIA Mingchao, et al. Operation state prediction of charging station based on spatio-temporal coupling characteristics[J]. Automation of Electric Power Systems, 2022, 46(3): 23-32.(in Chinese)
    [5] WEI Wei, MEI Shengwei, WU Lei, et al. Optimal traffic-power flow in urban electrified transportation networks[J]. IEEE Transactions on Smart Grid, 2017, 8(1): 84-95. doi: 10.1109/TSG.2016.2612239
    [6] 谢仕炜, 林伟伟, 张亚超. 基于变分不等式理论的电力-交通耦合网络均衡状态研究[J]. 中国电机工程学报, 2022, 42(17): 6220-6239

    XIE Shiwei, LIN Weiwei, ZHANG Yachao. Research on coupled power-transportation network equilibrium state based on variational inequality theory[J]. Proceedings of the CSEE, 2022, 42(17): 6220-6239.(in Chinese)
    [7] LV Si, WEI Zhinong, SUN Guoqiang, et al. Optimal power and semi-dynamic traffic flow in urban electrified transportation networks[J]. IEEE Transactions on Smart Grid, 2019, 11(3): 1854-1865.
    [8] ZHOU Zhe, ZHANG Xuan, GUO Qinglai, et al. Analyzing power and dynamic traffic flows in coupled power and transportation networks[J]. Renewable and Sustainable Energy Reviews, 2021, 135: 110083. doi: 10.1016/j.rser.2020.110083
    [9] 张鹏, 吕瑜佩, 郭明旻, 等. 简单闭环路网交通流定常解[J]. 应用数学和力学, 2021, 42(2): 123-132

    ZHANG Peng, LÜ Yupei, GUO Mingmin, et al. Steady-state solutions of traffic flow in a simple circled road network[J]. Applied Mathematics and Mechanics, 2021, 42(2): 123-132.(in Chinese)
    [10] ESTANDIA A, SCHIFFER M, ROSSI F, et al. On the interaction between autonomous mobility on demand systems and power distribution networks: an optimal power flow approach[J]. IEEE Transactions on Control of Network Systems, 2021, 8(3): 1163-1176. doi: 10.1109/TCNS.2021.3059225
    [11] LIU Xiaochuan, SOH C B, ZHAO Tianyang, et al. Stochastic scheduling of mobile energy storage in coupled distribution and transportation networks for conversion capacity enhancement[J]. IEEE Transactions on Smart Grid, 2021, 12(1): 117-130. doi: 10.1109/TSG.2020.3015338
    [12] LI Nan, UÇKUN C, CONSTANTINESCU E M, et al. Flexible operation of batteries in power system scheduling with renewable energy[J]. IEEE Transactions on Sustainable Energy, 2015, 7(2): 685-696.
    [13] 赵天阳, 张华君, 徐岩, 等. 不确定环境下含云计算数据中心的电网韧性增强调度[J]. 电力系统自动化, 2021, 45(3): 49-57

    ZHAO Tianyang, ZHANG Huajun, XU Yan, et al. Resilience-enhanced scheduling of power system with cloud computing data centers under uncertainty[J]. Automation of Electric Power Systems, 2021, 45(3): 49-57.(in Chinese)
    [14] RAHMANI M, KARGARIAN A, HUG G. Comprehensive power transfer distribution factor model for large-scale transmission expansion planning[J]. IET Generation, Transmission & Distribution, 2016, 10(12): 2981-2989.
    [15] ZHONG Shaopeng, JIANG Yu, NIELSEN O A. Lexicographic multi-objective road pricing optimization considering land use and transportation effects[J]. European Journal of Operational Research, 2022, 298(2): 496-509. doi: 10.1016/j.ejor.2021.05.048
    [16] MARLER R T, ARORA J S. The weighted sum method for multi-objective optimization: new insights[J]. Structural and Multidisciplinary Optimization, 2010, 41(6): 853-862. doi: 10.1007/s00158-009-0460-7
    [17] CHAKIROV A, FOURIE P J. Enriched Sioux Falls scenario with dynamic and disaggregate demand[J]. Arbeitsberichte Verkehrs-und Raumplanung, 2014: 978. doi: 10.3929/ethz-b-000080996
    [18] 张展鹏, 班明飞, 郭丹阳, 等. 适用于环境-经济调度研究的燃煤机组二氧化碳排放特性模型[J]. 上海交通大学学报, 2021, 55(12): 1663-1672 doi: 10.16183/j.cnki.jsjtu.2021.368

    ZHANG Zhanpeng, BAN Mingfei, GUO Danyang, et al. A model for carbon diosixde emission characteristics of coal-fired unit for environment-economic dispatch research[J]. Journal of Shanghai Jiaotong University, 2021, 55(12): 1663-1672.(in Chinese) doi: 10.16183/j.cnki.jsjtu.2021.368
    [19] 肖勇, 喻洁, 张新森, 等. 泛在电力物联网下用户侧分布式电源P2P优化调度研究[J]. 应用数学和力学, 2020, 41(12): 1358-1368

    XIAO Yong, YU Jie, ZHANG Xinsen, et al. Research on P2P optimal scheduling of user side distributed generation under ubiquitous power internet of things[J]. Applied Mathematics and Mechanics, 2020, 41(12): 1358-1368.(in Chinese)
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  574
  • HTML全文浏览量:  249
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-04
  • 录用日期:  2022-12-05
  • 修回日期:  2022-11-23
  • 网络出版日期:  2022-12-06
  • 刊出日期:  2022-11-30

目录

    /

    返回文章
    返回