[1] |
程波, 徐峰. 考虑细胞外基质黏弹性行为的细胞黏附力学模型[J]. 应用数学和力学, 2021, 42(10): 1074-1080. doi: 10.21656/1000-0887.420259CHENG Bo, XU Feng. A molecular clutch model of cellular adhesion on viscoelastic substrate[J]. Applied Mathematics and Mechanics, 2021, 42(10): 1074-1080. (in Chinese) doi: 10.21656/1000-0887.420259
|
[2] |
PETERS G W M, BAAIJENS F P T. Modelling of non-isothermal viscoelastic flows[J]. Journal of Non-Newtonian Fluid Mechanics, 1997, 68(2/3): 205-224.
|
[3] |
MEBURGER S, NIETHAMMER M, BOTHE D, et al. Numerical simulation of non-isothermal viscoelastic flows at high Weissenberg numbers using a finite volume method on general unstructured meshes[J]. Journal of Non-Newtonian Fluid Mechanics, 2021, 287: 104451. doi: 10.1016/j.jnnfm.2020.104451
|
[4] |
MORENO L, CODINA R, BAIGES J. Numerical simulation of non-isothermal viscoelastic fluid flows using a VMS stabilized finite element formulation[J]. Journal of Non-Newtonian Fluid Mechanics, 2021, 296: 104640. doi: 10.1016/j.jnnfm.2021.104640
|
[5] |
GAO P. Three dimensional finite element computation of the non-isothermal polymer filling process by the phase field model[J]. Advances in Engineering Software, 2022, 172: 103207. doi: 10.1016/j.advengsoft.2022.103207
|
[6] |
GINGOLD R A, MONAGHAN J J. Smoothed particle hydrodynamics: theory and application to non-spherical stars[J]. Monthly Notices of the Royal Astronomical Society, 1977, 181(3): 375-389. doi: 10.1093/mnras/181.3.375
|
[7] |
LUCY L B. A numerical approach to the testing of the fission hypothesis[J]. The Astronomical Journal, 1977, 82: 1013-1024. doi: 10.1086/112164
|
[8] |
LIU G R, LIU M B. Smoothed Particle Hydrodynamics: a Meshfree Particle Method[M]. Singapore: World Scientific, 2003.
|
[9] |
XU X, JIANG Y L, YU P. SPH simulations of 3D dam-break flow against various forms of the obstacle: toward an optimal design[J]. Ocean Engineering, 2021, 229: 108978. doi: 10.1016/j.oceaneng.2021.108978
|
[10] |
PENG Y X, ZHANG A M, MING F R. Numerical simulation of structural damage subjected to the near-field underwater explosion based on SPH and RKPM[J]. Ocean Engineering, 2021, 222: 108576. doi: 10.1016/j.oceaneng.2021.108576
|
[11] |
黄志涛, 杨瑜, 邵家儒, 等. 罐车防晃结构SPH模拟研究[J]. 应用数学和力学, 2020, 41(7): 760-770. doi: 10.21656/1000-0887.400234HUANG Zhitao, YANG Yu, SHAO Jiaru, et al. Numerical simulation of sloshing mitigating structures in tank trucks with the SPH method[J]. Applied Mathematics and Mechanics, 2020, 41(7): 760-770. (in Chinese) doi: 10.21656/1000-0887.400234
|
[12] |
MENG Z F, ZHANG A M, YAN J L, et al. A hydroelastic fluid-structure interaction solver based on the Riemann-SPH method[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 390: 114522. doi: 10.1016/j.cma.2021.114522
|
[13] |
ELLERO M, TANNER R I. SPH simulations of transient viscoelastic flows at low Reynolds number[J]. Journal of Non-Newtonian Fluid Mechanics, 2005, 132(1/3): 61-72.
|
[14] |
FANG J, OWENS R G, TACHER L, et al. A numerical study of the SPH method for simulating transient viscoelastic free surface flows[J]. Journal of Non-Newtonian Fluid Mechanics, 2006, 139(1/2): 68-84.
|
[15] |
MURASHIMA T, TANIGUCHI T. Multiscale simulation of history-dependent flow in entangled polymer melts[J]. Europhysics Letters, 2011, 96(1): 18002. doi: 10.1209/0295-5075/96/18002
|
[16] |
杨波, 欧阳洁. 基于SPH方法的瞬态粘弹性流体的数值模拟[J]. 计算物理, 2010, 27(5): 679. doi: 10.3969/j.issn.1001-246X.2010.05.007YANG Bo, OUYANG Jie. Numerical simulation of transient viscoelastic flows using SPH method[J]. Chinese Journal of Computational Physics, 2010, 27(5): 679. (in Chinese) doi: 10.3969/j.issn.1001-246X.2010.05.007
|
[17] |
XU X, DENG X L. An improved weakly compressible SPH method for simulating free surface flows of viscous and viscoelastic fluids[J]. Computer Physics Communications, 2016, 201: 43-62. doi: 10.1016/j.cpc.2015.12.016
|
[18] |
KING J R C, LIND S J. High Weissenberg number simulations with incompressible smoothed particle hydrodynamics and the log-conformation formulation[J]. Journal of Non-Newtonian Fluid Mechanics, 2021, 293: 104556. doi: 10.1016/j.jnnfm.2021.104556
|
[19] |
DUQUE-DAZA C, ALEXIADIS A. A simplified framework for modelling viscoelastic fluids in discrete multiphysics[J]. Chem Engineering, 2021, 5(3): 61.
|
[20] |
VAHABI M, HADAVANDMIRZAEI H, KAMKARI B, et al. Interaction of a pair of in-line bubbles ascending in an Oldroyd-B liquid: a numerical study[J]. European Journal of Mechanics B: Fluids, 2021, 85: 413-429. doi: 10.1016/j.euromechflu.2020.11.004
|
[21] |
SPANJAARDS M M A, HULSEN M A, ANDERSON P D. Computational analysis of the extrudate shape of three-dimensional viscoelastic, non-isothermal extrusion flows[J]. Journal of Non-Newtonian Fluid Mechanics, 2020, 282: 104310. doi: 10.1016/j.jnnfm.2020.104310
|
[22] |
白羽, 方慧灵, 张艳. Oldroyd-B流体绕拉伸楔形体的非稳态滑移流动与传热分析[J]. 应用数学和力学, 2022, 43(3): 272-280. doi: 10.21656/1000-0887.420197BAI Yu, FANG Huiling, ZHANG Yan. Unsteady slip flow and heat transfer analysis of Oldroyd-B fluid over the stretching wedge[J]. Applied Mathematics and Mechanics, 2022, 43(3): 272-280. (in Chinese) doi: 10.21656/1000-0887.420197
|
[23] |
LYU H G, SUN P N. Further enhancement of the particle shifting technique: towards better volume conservation and particle distribution in SPH simulations of violent free-surface flows[J]. Applied Mathematical Modelling, 2022, 101: 214-238. doi: 10.1016/j.apm.2021.08.014
|
[24] |
XU X, YU P. A multiscale SPH method for simulating transient viscoelastic flows using bead-spring chain model[J]. Journal of Non-Newtonian Fluid Mechanics, 2016, 229: 27-42. doi: 10.1016/j.jnnfm.2016.01.005
|
[25] |
BONET J, LOK T S L. Variational and momentum preservation aspects of smooth particle hydrodynamic formulations[J]. Computer Methods in Applied Mechanics and Engineering, 1999, 180(1/2): 97-115.
|
[26] |
SHAO S, LO E Y M. Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface[J]. Advances in Water Resources, 2003, 26(7): 787-800. doi: 10.1016/S0309-1708(03)00030-7
|
[27] |
TOMÉ M F, MANGIAVACCHI N, CUMINATO J A, et al. A finite difference technique for simulating unsteady viscoelastic free surface flows[J]. Journal of Non-Newtonian Fluid Mechanics, 2002, 106(2/3): 61-106.
|
[28] |
ZHUANG X, OUYANG J, LI W, et al. Three-dimensional simulations of non-isothermal transient flow and flow-induced stresses during the viscoelastic fluid filling process[J]. International Journal of Heat and Mass Transfer, 2017, 104: 374-391. doi: 10.1016/j.ijheatmasstransfer.2016.08.064
|